共查询到20条相似文献,搜索用时 0 毫秒
1.
Celsr, also called Flamingo (Fmi) genes encode proteins of the cadherin superfamily. Celsr cadherins are seven-pass transmembrane proteins with nine cadherin repeats in the extracellular domain, and an anonymous intracellular C-terminus. The Drosophila Fmi gene regulates epithelial planar cell polarity and dendritic field deployment. The three Flamingo gene orthologs in man and rodents are named, respectively, CELSR1-3 and Celsr1-3. Celsr1 and 2 are expressed during early development, in the brain and epithelia. In this report, we characterized further Celsr genes in the mouse, and examined their developmental pattern of expression. Each Celsr is expressed prominently in the developing brain following a specific pattern, suggesting that they serve distinct functions. 相似文献
2.
Mónica L. Fiszman Alessandro Zuddas† Mónica I. Masana‡ Jeffery L. Barker Umberto di Porzio§ 《Journal of neurochemistry》1991,56(2):392-399
We have measured [3H]dopamine ([3H]DA) uptake and tyrosine hydroxylase-immunopositive immunostaining in cells acutely dissociated from the embryonic ventral mesencephalon (MSC). DA and its metabolites as well as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) activities were determined in homogenates taken from the MSC and striatum (STR). In the embryonic ventral MSC measurable DA and tyrosine hydroxylase (TH) immunostaining were present as early as embryonic day (E) 12.5. At E14 the number of TH+ neurons was about 50% of the values at E18. In the MSC, DA concentration increased sharply at E16 and reached a plateau before birth that was 10-fold lower than adult values. In the STR, DA was first detected at E16, suggesting that DA fibers reach the STR at this embryonic stage. High-affinity DA uptake appeared in the MSC only at E16, concomitantly with the arrival of DA fibers in the STR, increased sharply between E16 and E18, and reached a plateau before birth. This uptake mechanism was not selective for catecholamine uptake inhibitors. Thus, DA synthesis in the MSC preceded the onset of high-affinity uptake mechanism, which could be correlated to the beginning of striatal DA innervation. Measurable MAO and COMT activities were detected as early as E13 (MSC) and E15 (STR), but not DA metabolites, which appeared later. We conclude that the high-affinity DA uptake mechanism in MSC DA neurons develops coincident with the arrival of DA fibers to the STR. The sharp increase of DA uptake between E16 and E18 is due only in part to an increase in the number of TH+ cells. These results support the hypothesis that in vivo the target STR neurons regulate the maturation of MSC DA cells. 相似文献
3.
The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson’s disease. 相似文献
4.
Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions. 相似文献
5.
Mutation in the Nurr1 gene, a member of the nuclear receptor superfamily, causes selective agenesis of dopaminergic neurons in the midbrain of null mice. Homozygous Nurr1 knockout mice (Nurr1-/-) die 1 day after birth, but heterozygous mice (Nurr1 +/-) survive postnatally without obvious locomotor deficits. Although adult Nurr1 +/- mice show significantly reduced Nurr1 protein levels in the substantia nigra (SN), they display a normal range of tyrosine hydroxylase-positive neuron numbers in the SN and normal levels of dopamine in the striatum. The reduction in Nurr1 expression in Nurr1 +/- mice, however, confers increased vulnerability to the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) compared with wild-type (Nurr1 +/+) mice. This study suggests that Nurr1 may play an important role in maintaining mature mesencephalic dopaminergic neuron function and that a defect in Nurr1 may increase susceptibility to SN injury. 相似文献
6.
Abstract: Nanomolar concentrations of cytosine arabinoside (ara-C), a structural analogue of 2'-deoxycytidine (2'dC) used in the chemotherapy of cancer, proved to be highly effective in preventing the death of postmitotic dopaminergic neurons that occurs spontaneously by apoptosis in mesencephalic cultures. The rescued cells were totally functional and highly differentiated. The trophic/neuroprotective effects of ara-C were (1) specific for dopaminergic neurons; (2) long-lived, remaining detectable several days after withdrawal of the nucleoside analogue from the culture medium; (3) still observed when the treatment was delayed after plating; (4) abolished by an excess of 2'dC or dCTP, or by exposure to the neurotoxin 1-methyl-4-phenylpyridinium; and (5) mimicked by ara-CTP, 5-fluoro-2'-deoxyuridine, and aphidicolin. Autoradiographic studies revealed that ara-C was incorporated exclusively into astrocyte nuclei, suggesting that the dopaminotrophic activity was indirect and resulted from the antiproliferative action of the modified nucleoside on glial cells at concentrations that were not neurotoxic. No evidence was found for putative deleterious or trophic molecules secreted by proliferating or ara-C-treated astrocytes, respectively, suggesting that neuroglial contact may play a role. Our results suggest a possible mechanism underlying neurodegeneration in Parkinson's disease, where selective loss of dopaminergic neurons in the mesencephalon is accompanied by astrogliosis. 相似文献
7.
8.
Cell and growth cone migrations along the dorsoventral axis of Caenorhabditis elegans are mediated by the UNC-5 and UNC-40 receptor subtypes for the secreted UNC-6 guidance cue. To characterize UNC-6 receptor function in vivo, we have examined genetic interactions between unc-5 and unc-40 in the migrations of the hermaphrodite distal tip cells. We report that cell migration defects as severe as those associated with a null mutation in unc-6 are produced only by null mutations in both unc-5 and unc-40, indicating that either receptor retains some partial function in the absence of the other. We show that hypomorphic unc-5 alleles exhibit two distinct types of interallelic genetic interactions. In an unc-40 wild-type genetic background, some pairs of hypomorphic unc-5 alleles exhibit a partial allelic complementation. In an unc-40 null background, however, we observed that unc-5 hypomorphs exhibit dominant negative effects. We propose that the UNC-5 and UNC-40 netrin receptors can function to mediate chemorepulsion in DTC migrations either independently or together, and the observed genetic interactions suggest that this flexibility in modes of signaling results from the formation of a variety of oligomeric receptor complexes. 相似文献
9.
Mark A. Rossi Tatyana Sukharnikova Volodya Y. Hayrapetyan Lucie Yang Henry H. Yin 《PloS one》2013,8(6)
We examined the contribution of the nigrostriatal DA system to instrumental learning and behavior using optogenetics in awake, behaving mice. Using Cre-inducible channelrhodopsin-2 (ChR2) in mice expressing Cre recombinase driven by the tyrosine hydroxylase promoter (Th-Cre), we tested whether selective stimulation of DA neurons in the substantia nigra pars compacta (SNC), in the absence of any natural rewards, was sufficient to promote instrumental learning in naive mice. Mice expressing ChR2 in SNC DA neurons readily learned to press a lever to receive laser stimulation, but unlike natural food rewards the lever pressing did not decline with satiation. When the number of presses required to receive a stimulation was altered, mice adjusted their rate of pressing accordingly, suggesting that the rate of stimulation was a controlled variable. Moreover, extinction, i.e. the cessation of action-contingent stimulation, and the complete reversal of the relationship between action and outcome by the imposition of an omission contingency, rapidly abolished lever pressing. Together these results suggest that selective activation of SNC DA neurons can be sufficient for acquisition and maintenance of a new instrumental action. 相似文献
10.
11.
Travis B. Lewis Joel N. Glasgow Anya M. Glandon David T. Curiel David G. Standaert 《PloS one》2010,5(9)
Background
Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo.Methodology/Principal Findings
Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals.Conclusions/Significance
These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in gene therapy of human PD. 相似文献12.
13.
In this study we describe a population of neurons in the adult rat trigeminal ganglion (TG) that express dopamine beta-hydroxylase
(DBH) and tyrosine hydroxylase (TH), and transport anti-DBH from their terminals. We have used NGF and NT3 labeled with biotin
and anti-p75NTR labeled with FITC to examine the transport of neurotrophins and their receptors by these cells. In both the superior cervical
ganglion (SCG) and the TG all neurons that transported anti-DBH transported NGF. While 100% of the DBH positive neurons in
the TG also transported NT3, approximately 25% of these neurons in the SCG failed to transport NT3. In the SCG virtually all
the neurons transported anti-p75NTR with the neurotrophins while in the TG more than 25% of these neurons failed to transport anti-p75NTR with the neurotrophins. These findings suggest that DBH positive neurons in the TG depend upon target-derived NGF and NT3
for their noradrenergic phenotype. 相似文献
14.
The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/netrin, UNC-5 and UNC-40/DCC modulated the extent of growth cone protrusion that correlated with attraction versus repulsion. Loss-of-function unc-5 mutants displayed increased protrusion in repelled growth cones, whereas loss-of-function unc-6 or unc-40 mutants caused decreased protrusion. In contrast to previous studies, our work suggests that the severe guidance defects in unc-5 mutants may be due to latent UNC-40 attractive signaling that steers the growth cone back towards the ventral source of UNC-6. UNC-6/Netrin signaling also controlled polarity of growth cone protrusion and F-actin accumulation that correlated with attraction versus repulsion. However, filopodial dynamics were affected independently of polarity of protrusion, indicating that the extent versus polarity of protrusion are at least in part separate mechanisms. In summary, we show here that growth cone guidance in response to UNC-6/netrin involves a combination of polarized growth cone protrusion as well as a balance between stimulation and inhibition of growth cone (e.g. filopodial) protrusion. 相似文献
15.
Netrin is an evolutionarily conserved, secretory axon guidance molecule. Netrin's receptors, UNC-5 and UNC-40/DCC, are single trans-membrane proteins with immunoglobulin domains at their extra-cellular regions. Netrin is thought to provide its positional information by establishing a concentration gradient. UNC-5 and UNC-40 act at growth cones, which are specialized axonal tip structures that are generally located at a long distance from the neural cell body. Thus, the proper localization of both Netrin and its receptors is critical for their function. This review addresses the localization mechanisms of UNC-6/Netrin and its receptors in Caenorhabditis elegans, focusing on our recent reports. These findings include novel insights on cytoplasmic proteins that function upstream of the receptors. 相似文献
16.
Sara Teller Clara Granell Manlio De Domenico Jordi Soriano Sergio Gómez Alex Arenas 《PLoS computational biology》2014,10(9)
The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters'' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a ‘connectivity backbone’ in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture. 相似文献
17.
UNC-51 and UNC-14 are required for the axon guidance of many neurons in Caenorhabditis elegans. UNC-51 is a serine/threonine kinase homologous to yeast Atg1, which is required for autophagy. The binding partner of UNC-51, UNC-14, contains a RUN domain that is predicted to play an important role in multiple Ras-like GTPase signaling pathways. How these molecules function in axon guidance is largely unknown. Here we observed that, in unc-51 and unc-14 mutants, UNC-5, the receptor for axon-guidance protein Netrin/UNC-6, abnormally localized in neuronal cell bodies. By contrast, the localization of many other proteins required for axon guidance was undisturbed. Moreover, UNC-5 localization was normal in animals with mutations in the genes for axon guidance proteins, several motor proteins, vesicle components and autophagy-related proteins. We also found that unc-5 and unc-6 interacted genetically with unc-51 and unc-14 to affect axon guidance, and that UNC-5 co-localized with UNC-51 and UNC-14 in neurons. These results suggest that UNC-51 and UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5, and that UNC-5 uses a unique mechanism for its localization; the functionality of UNC-5 is probably regulated by this localization. 相似文献
18.
The secreted molecule unc-6/netrin is important for guiding axon projections and cell migrations. unc-5 and unc-40/DCC are identified as receptors for unc-6/netrin. The downstream factors of unc-6 receptors are beginning to be elucidated, and some key factors have been identified in various organisms. Here, we showed that SRC-1 interacts with the cytosolic domain of UNC-5 through its SH2 domain. This interaction also requires the intact kinase activity of SRC-1. Downregulation of src-1 by RNA interference decreases the biological processes initiated by the UNC-5 protein and decreases UNC-5 tyrosine phosphorylation. We also generated a chimeric protein consisting of the extracellular domain and transmembrane domain of UNC-5 and an intracellular domain of SRC-1. This fusion protein is able to partially rescue mutant phenotypes caused by unc-5 but not unc-6, unc-40, and unc-34. Our results support a model in which SRC-1 is required for UNC-5-induced axon repulsion and gonad migration signaling pathways and in which localizing SRC-1 activity to UNC-5 is crucial for proper signal transduction in response to unc-6/netrin. 相似文献
19.
Grooming behaviour is the most common innate behaviour in animals. In rodents, it consists of sequences of movements organized in four phases, executed symmetrically on both sides of the animal and creating a syntactic chain of behavioural events. The grooming syntax can be altered by stress and novelty, as well as by several mutations and brain lesions. Grooming behaviour is known to be affected by alterations of the dopamine system, including dopamine receptor modulation, dopamine alteration in genetically modified animals, and after brain lesion. While a lot is known about the initiation and syntactic modifications of this refined sequence of movements, effects of unilateral lesion of dopamine neurons are unclear particularly regarding the symmetry of syntactic chains. In the present work we studied grooming in mice unilaterally lesioned in the medial forebrain bundle by 6-hydroxydopamine. We found a reduction in completion of grooming bouts, associated with reduction in number of transitions between grooming phases. The data also revealed the development of asymmetry in grooming behaviour, with reduced tendency to groom the contralateral side to the lesion. Symmetry was recovered following treatment with L-DOPA. Thus, the present work shows that unilateral lesion of dopamine neurons reduces self-grooming behaviour by affecting duration and numbers of events. It produces premature discontinuation of grooming chains but the sequence syntax remains correct. This deficient grooming could be considered as an intrinsic symptom of Parkinson’s disease in animal models and could present some similarities with abnormalities of motor movement sequencing seen in patients. Our study also suggests grooming analysis as an additional method to screen parkinsonism in animal models. 相似文献
20.
Cho BP Sugama S Shin DH DeGiorgio LA Kim SS Kim YS Lim SY Park KC Volpe BT Cho S Joh TH 《Cellular and molecular neurobiology》2003,23(4-5):551-560
Transection of the medial forebrain bundle caused apoptosis of dopamine neurons in the rat substantia nigra. Immunohistochemical localization of activated microglia and tyrosine hydroxylase in the axotomized substantia nigra showed that activation of microglia was rapid and OX-6 (MHC-II marker)-positive and ED1 (lysosomal phagocytic marker)-positive microglia were apposed to structurally intact tyrosine hydroxylase-positive dopamine neurons, indicating microglial phagocytosis of degenerating dopamine neurons. The occurrence of microglial phagocytosis at early stages of apoptosis may indicate the evolution of apoptosis into an irreversible state. Alternatively, interventions that suppress early activation of microglia might lead to novel mechanisms for neuron protection. 相似文献