首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine why the duration of mitosis (DM) is less in Taxol than in nocodazole or Eg5 inhibitors we studied the relationship between Taxol concentration, the DM, and the mitotic checkpoint. We found that unlike for other spindle poisons, in Taxol the DM becomes progressively shorter as the concentration surpasses ∼0.5 µM. Studies on RPE1 and PtK2 expressing GFP/cyclin B or YFP/Mad2 revealed that cells ultimately satisfy the checkpoint in Taxol and do so faster at concentrations >0.5 µM. Inhibiting the aurora-B kinase in Taxol-treated RPE1 cells accelerates checkpoint satisfaction by stabilizing syntelic kinetochore attachments and reduces the DM to ∼1.5 h regardless of drug concentration. A similar stabilization of syntelic attachments by Taxol itself appears responsible for accelerated checkpoint satisfaction at concentrations >0.5 µM. Our results provide a novel conceptual framework for how Taxol prolongs mitosis and caution against using it in checkpoint studies. They also offer an explanation for why some cells are more sensitive to lower versus higher Taxol concentrations.  相似文献   

2.
The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G1 following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53+/+ and p53−/− murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time. Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted. We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis. Despite having 4N DNA content, adapted cells are similar to G1 cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21−/− fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation. Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.  相似文献   

3.
BubR1 is one of two putative vertebrate homologs of the yeast spindle checkpoint protein Bub1. We have used deletion and point mutants to elucidate the functions of BubR1 in mitosis. The nocodazole-activated spindle checkpoint of HeLa cells was disrupted by expression of a 39 amino acid fragment (residues 382-420) of BubR1 containing the Bub3-binding GLEBS motif. In contrast, we observed normal checkpoint function in a truncation mutant comprising residues 1-477, despite the lack of the C-terminal BubR1 kinase domain. In the absence of nocodazole, expression of the 477 amino acid fragment slowed progress through prometaphase of mitosis, causing accumulation of mitotic cells. This accumulation was also seen in a kinase dead mutant. The prolongation of mitosis required both kinetochore binding and an intact, functional spindle checkpoint. The prolongation of mitosis by kinase deficient BubR1 constructs indicates a crucial role for the BubR1 C-terminal kinase domain in chromosome movement, in addition to the role of the N-terminus in the checkpoint.  相似文献   

4.
The spindle assembly checkpoint arrests cells in mitosis when defects in mitotic spindle assembly or partitioning of the replicated genome are detected. This checkpoint blocks exit from mitosis until the defect is rectified or the cell initiates apoptosis. In this study we have used caffeine to identify components of the mechanism that signals apoptosis in mitotic checkpoint-arrested cells. Addition of caffeine to spindle checkpoint-arrested cells induced >40% apoptosis within 5 h. It also caused proteasome-mediated destruction of cyclin B1, a corresponding reduction in cyclin B1/cdk1 activity, and reduction in MPM-2 reactivity. However, cells retained MAD2 staining at the kinetochores, an indication of continued spindle checkpoint function. Blocking proteasome activity did not block apoptosis, but continued spindle checkpoint function was essential for apoptosis. After systematically eliminating all known targets, we have identified p21-activated kinase PAK1, which has an anti-apoptotic function in spindle checkpoint-arrested cells, as a target for caffeine inhibition. Knockdown of PAK1 also increased apoptosis in spindle checkpoint-arrested cells. This study demonstrates that the spindle checkpoint not only regulates mitotic exit but apoptosis in mitosis through the activity of PAK1.  相似文献   

5.
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.  相似文献   

6.
Mutations in the p53 tumor suppressor gene locus predispose human cells to chromosomal instability. This is due in part to interference of mutant p53 proteins with the activity of the mitotic spindle and postmitotic cell cycle checkpoints. Recent data demonstrates that wild type p53 is required for postmitotic checkpoint activity, but plays no role at the mitotic spindle checkpoint. Likewise, structural dominant p53 mutants demonstrate gain-of-function properties at the mitotic spindle checkpoint and dominant negative properties at the postmitotic checkpoint. At mitosis, mutant p53 proteins interfere with the control of the metaphase-to-anaphase progression by up-regulating the expression of CKs1, a protein that mediates activatory phosphorylation of the anaphase promoting complex (APC) by Cdc2. Cells that carry mutant p53 proteins overexpress CKs1 and are unable to sustain APC inactivation and mitotic arrest. Thus, mutant p53 gain-of-function at mitosis constitutes a key component to the origin of chromosomal instability in mutant p53 cells.  相似文献   

7.
We identified a truncated allele of dam1 as a multicopy suppressor of the sensitivity of cdc13-117 (cyclin B) and mal3-1 (EB-1) cells to thiabendazole, a microtubule poison. We find that Dam1 binds to the plus end of spindle microtubules and kinetochores as cells enter mitosis and this is dependent on other components of the fission yeast DASH complex, including Ask1, Duo1, Spc34 and Dad1. By contrast, Dad1 remains bound to kinetochores throughout the cell cycle and its association is dependent on the Mis6 and Mal2, but not Mis12, Nuf2 or Cnp1, kinetochore proteins. In cells lacking Dam1, or other components of the DASH complex, anaphase is delayed due to activation of the spindle assembly checkpoint and lagging sister chromatids are frequently observed and occasionally sister chromatid pairs segregate to the same spindle pole. We find that the mitotic centromere-associated Klp5/Klp6 kinesin complex is essential in cells lacking components of the DASH complex. Cells lacking both Dam1 and Klp5 undergo a first cell cycle arrest in mitosis due to a failure to establish bipolar chromosome attachment.  相似文献   

8.
Mutation of nimA reversibly arrests cells in late G2 and nimA overexpression promotes premature mitosis. Here we demonstrate that the product of nimA (designated NIMA) has protein kinase activity that can phosphorylate beta-casein but not histone proteins. NIMA kinase activity is cell cycle regulated being 20-fold higher at mitosis when compared to S-phase arrested cells. NIMA activation is normally required in G2 to initiate chromosome condensation, to nucleate spindle pole body microtubules, and to allow an MPM-2 specific mitotic phosphorylation. All three of these mitotic events can occur in the absence of activated NIMA when the bimE gene is mutated (bimE7). However, the bimE7 mutation cannot completely bypass the requirement for nimA during mitosis as entry into mitosis in the absence of NIMA activation results in major mitotic defects that affect both the organization of the nuclear envelope and mitotic spindle. Thus, although nimA plays an essential but limited role during mitosis, mutation of nimA arrests all of mitosis. We therefore propose that mutation of nimA prevents mitotic initiation due to a checkpoint arrest that is negatively mediated by bimE. The checkpoint ensures that mitosis is not initiated until NIMA is mitotically activated.  相似文献   

9.
The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.  相似文献   

10.
BACKGROUND: Metaphase is thought to be a force-equilibrium state of "tug of war," in which poleward forces are pulling kinetochores and counteracting the cohesive forces between the centromeres. Unlike conventional kinesins, members of the Kin I family are microtubule-depolymerizing enzymes, which are expected to be molecules that could generate poleward forces. RESULTS: We have characterized mitotic roles of two Kin I homologs, Klp5 and Klp6, in fission yeast. Klp5 and Klp6 colocalize to the mitotic kinetochores and the spindle midzone. These two proteins form a heterocomplex, but not a homocomplex. Albeit not essential, both proteins are required for accurate chromosome segregation and normal morphology of interphase microtubules. Time-lapse live analysis using GFP-alpha-tubulin indicates that these mutants spend a much longer time (2-fold) in mitosis before the initiation of anaphase B. Further observation using kinetochore and centromere markers shows that, in these mutants, sister centromeres move back and forth between the two poles, indicating that entry into anaphase A is delayed. This is supported by live image analysis showing that Cut2 securin is retained during the prolonged mitosis. Furthermore, the mitotic extension is dependent upon the Mad2 spindle checkpoint. CONCLUSIONS: We discuss two models of Kin I function in fission yeast. One proposes that Klp5 and Klp6 are required for efficient capturing of kinetochores by the spindles, while the other proposes that they are required to generate tension upon kinetochore capturing. Kin I, therefore, plays a fundamental role in the establishment of metaphase, probably by generating poleward forces at the kinetochores.  相似文献   

11.
The spindle checkpoint in the yeast Saccharomyces cerevisiae is an intracellular signal transduction pathway comprised of two branches that inhibit two different mitotic transitions in cells treated with benzimidazole drugs such as nocodazole. The kinetochore is an integral component of the MAD2 branch of the spindle checkpoint pathway. Current models propose that the kinetochore is required for both the establishment and maintenance of the spindle checkpoint but a role for the kinetochore in the maintenance of spindle checkpoint in yeast has never been directly tested. We used a temperature sensitive ndc10-1 mutant to inactivate kinetochores before and after arresting cells in mitosis to determine the role of kinetochores in the establishment and maintenance of the spindle checkpoint. We show that both establishment and maintenance requires kinetochore function in response to spindle damage induced by benzimidazole drugs. Excess expression of the Mps1 protein kinase causes wild type cells and ndc10-1 cells to arrest in mitosis. Unlike the spindle checkpoint arrest activated by benzimidazoles, this arrest can be maintained independently of kinetochores. The arrest induced by excess Mps1p is independent of BUB2. Therefore, mitotic arrest induced by excess Mps1p expression is due to the action of the MAD2 branch of the spindle checkpoint pathway and excess Mps1p acts downstream of the kinetochore.  相似文献   

12.
The spindle checkpoint in the yeast Saccharomyces cerevisiae is an intracellular signal transduction pathway comprised of two branches that inhibit two different mitotic transitions in cells treated with benzimidazole drugs such as nocodazole. The kinetochore is an integral component of the MAD2 branch of the spindle checkpoint pathway. Current models propose that the kinetochore is required for both the establishment and maintenance of the spindle checkpoint but a role for the kinetochore in the maintenance of spindle checkpoint in yeast has never been directly tested. We used a temperature sensitive ndc10-1 mutant to inactivate kinetochores before and after arresting cells in mitosis to determine the role of kinetochores in the establishment and maintenance of the spindle checkpoint. We show that both establishment and maintenance requires kinetochore function in response to spindle damage induced by benzimidazole drugs. Excess expression of the Mps1 protein kinase causes wild type cells and ndc10-1 cells to arrest in mitosis. Unlike the spindle checkpoint arrest activated by benzimidazoles, this arrest can be maintained independently of kinetochores. The arrest induced by excess Mps1p is independent of BUB2. Therefore, mitotic arrest induced by excess Mps1p expression is due to the action of the MAD2 branch of the spindle checkpoint pathway and excess Mps1p acts downstream of the kinetochore.  相似文献   

13.
The spindle assembly checkpoint (SAC) arrests mitosis until bipolar attachment of spindle microtubules to all chromosomes is accomplished. However, when spindle formation is prevented and the SAC cannot be satisfied, mammalian cells can eventually overcome the mitotic arrest while the checkpoint is still activated. We find that Aspergillus nidulans cells, which are unable to satisfy the SAC, inactivate the checkpoint after a defined period of mitotic arrest. Such SAC inactivation allows normal nuclear reassembly and mitotic exit without DNA segregation. We demonstrate that the mechanisms, which govern such SAC inactivation, require protein synthesis and can occur independently of inactivation of the major mitotic regulator Cdk1/Cyclin B or mitotic exit. Moreover, in the continued absence of spindle function cells transit multiple cell cycles in which the SAC is reactivated each mitosis before again being inactivated. Such cyclic activation and inactivation of the SAC suggests that it is subject to cell-cycle regulation that is independent of bipolar spindle function.  相似文献   

14.
During mitosis, chromosome segregation is regulated by a spindle checkpoint mechanism. This checkpoint delays anaphase until all kinetochores are captured by microtubules from both spindle poles, chromosomes congress to the metaphase plate, and the tension between kinetochores and their attached microtubules is properly sensed. Although the spindle checkpoint can be activated in many different cell types, the role of this regulatory mechanism in rapidly dividing embryonic animal cells has remained controversial. Here, using time-lapse imaging of live embryonic cells, we show that chemical or mutational disruption of the mitotic spindle in early Caenorhabditis elegans embryos delays progression through mitosis. By reducing the function of conserved checkpoint genes in mutant embryos with defective mitotic spindles, we show that these delays require the spindle checkpoint. In the absence of a functional checkpoint, more severe defects in chromosome segregation are observed in mutants with abnormal mitotic spindles. We also show that the conserved kinesin CeMCAK, the CENP-F-related proteins HCP-1 and HCP-2, and the core kinetochore protein CeCENP-C all are required for this checkpoint. Our analysis indicates that spindle checkpoint mechanisms are functional in the rapidly dividing cells of an early animal embryo and that this checkpoint can prevent chromosome segregation defects during mitosis.  相似文献   

15.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

16.
17.
Exit from mitosis in all eukaroytes requires inactivation of the mitotic kinase. This occurs principally by ubiquitin-mediated proteolysis of the cyclin subunit controlled by the anaphase-promoting complex (APC). However, an abnormal spindle and/or unattached kinetochores activates a conserved spindle checkpoint that blocks APC function. This leads to high mitotic kinase activity and prevents mitotic exit. DBF2 belongs to a group of budding yeast cell cycle genes that when mutated prevent cyclin degradation and block exit from mitosis. DBF2 encodes a protein kinase which is cell cycle regulated, peaking in metaphase-anaphase B/telophase, but its function remains unknown. Here, we show the Dbf2p kinase activity to be a target of the spindle checkpoint. It is controlled specifically by Bub2p, one of the checkpoint components that is conserved in fission yeast and higher eukaroytic cells. Significantly, in budding yeast, Bub2p shows few genetic or biochemical interactions with other members of the spindle checkpoint. Our data now point to the protein kinase Mps1p triggering a new parallel branch of the spindle checkpoint in which Bub2p blocks Dbf2p function.  相似文献   

18.
We have studied the response of human transformed cells to mitotic spindle inhibition. Two paired cell lines, K562 and its parvovirus-resistant KS derivative clone, respectively nonexpressing and expressing p53, were continuously exposed to nocodazole. Apoptotic cells were observed in both lines, indicating that mitotic spindle impairment induced p53-independent apoptosis. After a transient mitotic delay, both cell lines exited mitosis, as revealed by flow-cytometric determination of MPM2 antigen and cyclin B1 expression, coupled to cytogenetic analysis of sister centromere separation. Both cell lines exited mitosis without chromatid segregation. K562 p53-deficient cells further resumed DNA synthesis, giving rise to cells with a DNA content above 4C, and reentered a polyploid cycle. In contrast, KS cells underwent a subsequent G1 arrest in the tetraploid state. Thus, G1 arrest in tetraploid cells requires p53 function in the rereplication checkpoint which prevents the G1/S transition following aberrant mitosis; in contrast, p53 expression is dispensable for triggering the apoptotic response in the absence of mitotic spindle.  相似文献   

19.
The spindle and kinetochore–associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA–mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore–microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.  相似文献   

20.
We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号