首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eukaryotic peptide release factor 3 (eRF3) is a conserved, essential gene in eukaryotes implicated in translation termination. We have systematically measured the contribution of eRF3 to the rates of peptide release with both saturating and limiting levels of eukaryotic release factor 1 (eRF1). Although eRF3 modestly stimulates the absolute rate of peptide release (∼5-fold), it strongly increases the rate of peptide release when eRF1 is limiting (>20-fold). This effect was generalizable across all stop codons and in a variety of contexts. Further investigation revealed that eRF1 remains associated with ribosomal complexes after peptide release and subunit dissociation and that eRF3 promotes the dissociation of eRF1 from these post-termination complexes. These data are consistent with models where eRF3 principally affects binding interactions between eRF1 and the ribosome, either prior to or subsequent to peptide release. A role for eRF3 as an escort for eRF1 into its fully accommodated state is easily reconciled with its close sequence similarity to the translational GTPase EFTu.  相似文献   

3.
Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.  相似文献   

4.
Translation elongation is mediated by ribosomes and multiple soluble factors, many of which are conserved across bacteria and eukaryotes. During elongation, eukaryotic elongation factor 1A (eEF1A; EF-Tu in bacteria) delivers aminoacylated-tRNA to the A-site of the ribosome, whereas eEF2 (EF-G in bacteria) translocates the ribosome along the mRNA. Fungal translation elongation is striking in its absolute requirement for a third factor, the ATPase eEF3. eEF3 binds close to the E-site of the ribosome and has been proposed to facilitate the removal of deacylated tRNA from the E-site. eEF3 has two ATP binding cassette (ABC) domains, the second of which carries a unique chromodomain-like insertion hypothesized to play a significant role in its binding to the ribosome. This model was tested in the current study using a mutational analysis of the Sac7d region of the chromodomain-like insertion. Specific mutations in this domain result in reduced growth rate as well as slower translation elongation. In vitro analysis demonstrates that these mutations do not affect the ability of eEF3 to interact with the ribosome. Kinetic analysis revealed a larger turnover number for ribosomes in comparison to eEF3, indicating that the partial reactions involving the ribosome are significantly faster than that of eEF3. Mutations in the chromodomain-like insertion severely compromise the ribosome stimulated ATPase of eEF3, strongly suggesting that it exerts an allosteric effect on the hydrolytic activity of eEF3. The chromodomain-like insertion is, therefore, vital to eEF3 function and may be targeted for developing novel antifungal drugs.  相似文献   

5.
Translation elongation in eukaryotes is mediated by the concerted actions of elongation factor 1A (eEF1A), which delivers aminoacylated tRNA to the ribosome; elongation factor 1B (eEF1B) complex, which catalyzes the exchange of GDP to GTP on eEF1A; and eEF2, which facilitates ribosomal translocation. Here we present evidence in support of a novel mode of translation regulation by hindered tRNA delivery during mitosis. A conserved consensus phosphorylation site for the mitotic cyclin-dependent kinase 1 on the catalytic delta subunit of eEF1B (termed eEF1D) is required for its posttranslational modification during mitosis, resulting in lower affinity to its substrate eEF1A. This modification is correlated with reduced availability of eEF1A·tRNA complexes, as well as reduced delivery of tRNA to and association of eEF1A with elongating ribosomes. This mode of regulation by hindered tRNA delivery, although first discovered in mitosis, may represent a more globally applicable mechanism employed under other physiological conditions that involve down-regulation of protein synthesis at the elongation level.  相似文献   

6.
Structural studies of ribosome complexes with bound tRNAs and release factors show considerable contacts between these factors and helix 69 (H69) of 23 S rRNA. Although biochemical and genetic studies have provided some general insights into the role of H69 in tRNA and RF selection, a detailed understanding of these contributions remains elusive. Here, we present a pre- steady-state kinetic analysis establishing that two distinct regions of H69 make critical contributions to substrate selection. The loop of H69 (A1913) forms contacts necessary for the efficient accommodation of a subset of natural tRNA species, whereas the base of the stem (G1922) is specifically critical for UGA codon recognition by the class 1 release factor RF2. These data define a broad and critical role for this centrally located intersubunit helix (H69) in accurate and efficient substrate recognition by the ribosome.  相似文献   

7.
The ubiquitin-like molecule ISG15 (UCRP) and protein modification by ISG15 (ISGylation) are strongly induced by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. However, how ISGylation contributes to innate immune responses is not clear. The dsRNA-dependent protein kinase (PKR) inhibits translation by phosphorylating eIF2α to exert its anti-viral effect. ISG15 and PKR are induced by interferon, suggesting that a relationship exists between ISGylation and translational regulation. Here, we report that PKR is ISGylated at lysines 69 and 159. ISG15-modified PKR is active in the absence of virus infection and phosphorylates eIF2α to down-regulate protein translation. The present study describes a novel pathway for the activation of PKR and the regulation of protein translation.  相似文献   

8.
9.
10.
11.
The accurate decoding of the genetic information by the ribosome relies on the communication between the decoding center of the ribosome, where the tRNA anticodon interacts with the codon, and the GTPase center of EF-Tu, where GTP hydrolysis takes place. In the A/T state of decoding, the tRNA undergoes a large conformational change that results in a more open, distorted tRNA structure. Here we use a real-time transient fluorescence quenching approach to monitor the timing and the extent of the tRNA distortion upon reading cognate or near-cognate codons. The tRNA is distorted upon codon recognition and remains in that conformation until the tRNA is released from EF-Tu, although the extent of distortion gradually changes upon transition from the pre- to the post-hydrolysis steps of decoding. The timing and extent of the rearrangement is similar on cognate and near-cognate codons, suggesting that the tRNA distortion alone does not provide a specific switch for the preferential activation of GTP hydrolysis on the cognate codon. Thus, although the tRNA plays an active role in signal transmission between the decoding and GTPase centers, other regulators of signaling must be involved.  相似文献   

12.
13.
14.
15.
16.
Control of translation initiation in a tissue of an intact mammalian organism is a highly complex process requiring the continuous integration of multiple positive and negative stimuli. For a tissue such as skeletal muscle, which has the capacity to undergo dramatic changes in size and protein content, translation initiation contributes importantly to the regulation of global rates of protein synthesis and is controlled by numerous stimuli, including those arising from nutrients and hormones in the circulating blood, as well as from contraction-induced signaling within the tissue. Many of the pathways conveying signals generated by these stimuli converge on mTORC1, a serine-threonine protein kinase that has been termed the nutrient and energy sensor of the cell and that plays a prominent role in the regulation of cell growth. Control of translation initiation by mTORC1 is mediated through phosphorylation of downstream targets that modulate the binding of mRNA to the 43 S preinitiation complex. Control of translation initiation is also mediated through modulation of binding of initiator methionyl-tRNA to the 40 S ribosomal subunit. Together, modulation of these two regulatory steps in translation initiation accounts in large part for changes in protein synthesis in skeletal muscle produced by the integration of inputs from hormones, nutrients, and exercise.  相似文献   

17.
The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.  相似文献   

18.
eIF3a (eukaryotic translation initiation factor 3a), one of the core subunits of the eIF3 complex, has been implicated in regulating translation of different mRNAs and in tumorigenesis. A subcomplex consisting of eIF3a, eIF3b, eIF3g, and eIF3i (eIF3(a:b:i:g)) has also been identified. However, how eIF3a participates in translational regulation and in formation of the eIF3(a:b:i:g) subcomplex remain to be solved. In this study, we used the tandem affinity purification approach in combination with tandem MS/MS and identified the spectrin domain of eIF3a as the docking site for the formation of eIF3(a:b:i:g) subcomplex. Although eIF3b and eIF3i bind concurrently to the spectrin domain of eIF3a within ∼10–15 amino acids apart, eIF3g binds to eIF3a indirectly via binding to the carboxyl-terminal domain of eIF3b. The binding of eIF3b to the spectrin domain of eIF3a occurs in its RNA recognition motif domain where eIF3j also binds in a mutually exclusive manner. Together, we conclude that the spectrin domain of eIF3a is responsible for the formation of eIF3(a:b:i:g) subcomplex and, because of mutually exclusive nature of bindings of eIF3a and eIF3j to eIF3b, different subcomplexes of eIF3 likely exist and may perform noncanonical functions in translational regulation.  相似文献   

19.
20.
Eukaryotic initiation factor 2B (eIF2B) plays a key role in protein synthesis and in its control. It comprises five different subunits, α-ε, of which eIF2Bε contains the catalytic domain. Formation of the complete complex is crucial for full activity and proper control of eIF2B. Mutations in the genes for eIF2B cause an often severe neurological disorder, "vanishing white matter." eIF2Bγ and eIF2Bε contain homologous and conserved domains with sequence similarity to nucleotidyl transferases (NTs) and acyl transferases and can form a binary complex. The latter contain a hexad repeat that mainly comprises isoleucyl residues (hence termed the "I-patch" region). These data reveal that certain residues in the NT domains of eIF2Bγ/ε, which are highly conserved throughout eukaryotes, play key roles in the interactions between subunits in the eIF2B complex. Our data show that the I-patch regions are important in the interactions between the catalytic eIF2Bγε complex and the other subunits. We also studied the functional effects of vanishing white matter mutations in the NT and I-patch domains. Lastly, our data show that eIF2Bγ promotes the expression of eIF2Bε, providing a mechanism for achieving correct stoichiometry of these eIF2B subunits in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号