首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flynn CM  Hunt KA  Gralnick JA  Srienc F 《Bio Systems》2012,107(2):120-128
A stoichiometric model describing the central metabolism of Shewanella oneidensis MR-1 wild-type and derivative strains was developed and used in elementary mode analysis (EMA). Shewanella oneidensis MR-1 can anaerobically respire a diverse pool of electron acceptors, and may be applied in several biotechnology settings, including bioremediation of toxic metals, electricity generation in microbial fuel cells, and whole-cell biocatalysis. The metabolic model presented here was adapted and verified by comparing the growth phenotypes of 13 single- and 1 double-knockout strains, while considering respiration via aerobic, anaerobic fumarate, and anaerobic metal reduction (Mtr) pathways, and utilizing acetate, n-acetylglucosamine (NAG), or lactate as carbon sources. The gene ppc, which encodes phosphoenolpyruvate carboxylase (Ppc), was determined to be necessary for aerobic growth on NAG and lactate, while not essential for growth on acetate. This suggests that Ppc is the only active anaplerotic enzyme when cultivated on lactate and NAG. The application of regulatory and substrate limitations to EMA has enabled creation of metabolic models that better reflect biological conditions, and significantly reduce the solution space for each condition, facilitating rapid strain optimization. This wild-type model can be easily adapted to include utilization of different carbon sources or secretion of different metabolic products, and allows the prediction of single- and multiple-knockout strains that are expected to operate under defined conditions with increased efficiency when compared to wild type cells.  相似文献   

2.
Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.  相似文献   

3.
An expression plasmid was constructed in order to carry out heterologous expression of the gene of the NAD+-dependent formate dehydrogenase (FDH) from methylotrophic bacterium Moraxella sp. in the cells of Shewanella oneidensis MR-1 under aerobic and anaerobic conditions. In both modes of cell cultivation, recombinant FDH activity was revealed in the cell lysate of the transformants. In the medium with la? tate as a carbon source, the rate of anaerobic respiration determined as the rate of conversion of fumarate (the electron acceptor) to succinate was higher in the transformant with recombinant FDH. Anaerobic cultivation of the FDH-containing transformant of S. oneidensis MR-1 in a microbial fuel cell (MFC) revealed increased current density.  相似文献   

4.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

5.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

6.
Shewanella oneidensis MR-1, a model strain of exoelectrogenic bacteria (EEB), plays a key role in environmental bioremediation and bioelectrochemical systems because of its unique respiration capacity. However, only a narrow range of substrates can be utilized by S. oneidensis MR-1 as carbon sources, resulting in its limited applications. In this study, a rapid, highly efficient, and easily manipulated base-editing system pCBEso was developed by fusing a Cas9 nickase (Cas9n (D10A)) with the cytidine deaminase rAPOBEC1 in S. oneidensis MR-1. The C-to-T conversion of suitable C within the base-editing window could be readily and efficiently achieved by the pCBEso system without requiring double-strand break or repair templates. Moreover, double-locus simultaneous editing was successfully accomplished with an efficiency of 87.5%. With this tool, the key genes involving in N-acetylglucosamine (GlcNAc) or glucose metabolism in S. oneidensis MR-1 were identified. Furthermore, an engineered strain with expanded carbon source utilization spectra was constructed and exhibited a higher degradation rate for multiple organic pollutants (i.e., azo dyes and organoarsenic compounds) than the wild-type when glucose or GlcNAc was used as the sole carbon source. Such a base-editing system could be readily applied to other EEB. This study not only enhances the substrate utilization and pollutant degradation capacities of S. oneidensis MR-1 but also accelerates the robust construction of engineered strains for environmental bioremediation.  相似文献   

7.
Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.  相似文献   

8.
A DNA fragment containing a promoter-operator and structural parts of the uridine phosphorylase gene from Shewanella oneidensis MR-1 was cloned. Cross-heterological expression of the udp genes from Sh. oneidensis MR-1 and Escherichia coli under the control of authentic regulatory regions is shown. The UDP protein accumulates in an active form in the cytoplasmic fraction of cells. The recombinant UDP protein from Sh. oneidensis MR-1 obtained by heterological expression was isolated and characterized. E. coli udp gene promoter activity was observed during heterological expression in Sh. oneidensis MR-1 cells under both aerobic and anaerobic conditions.  相似文献   

9.
In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni–Fe] hydrogenase (HyaB) and periplasmic [Fe–Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein-1, respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.  相似文献   

10.
The mutants of Shewanella oneidensis MR-1 resistant to fosfomycin, a toxic analogue of phosphoenolpyruvate, were obtained. The mutants exhibited increased reducing activity and higher rates of lactate utilization. A correlation was shown between the rates of metabolism of oxidized substrates and the rate of reduction of methylene blue, a mediator of electron transport. The mutants of S. oneidensis MR-1 may be used in microbial fuel cells for intensification of energy production from organic compounds.  相似文献   

11.
The reduction of Cr(VI) by the metal-reducing bacterium Shewanella oneidensis MR-1 was evaluated, to determine the potential for exploiting Cr(VI) bioreduction as a means of treating chromate conversion coating (CCC) waste streams. Inclusion of Cr(VI) at concentrations ≥1 mM inhibited aerobic growth of S. oneidensis, but that organism was able to reduce Cr(VI) at a concentration of up to 1 mM under anaerobic, nongrowth conditions. S. oneidensis reduced Cr(VI) in the presence of common CCC constituents, with the exception of ferricyanide, when these CCC constituents were included at concentrations typical of CCC waste streams. Ferricyanide inhibited neither aerobic growth nor metabolism under aerobic, nitrate- or iron-reducing conditions, suggesting that the ferricyanide-depended inhibition of Cr(VI) reduction is not due to broad metabolic inhibition, but is specific to Cr(VI) reduction. Results indicate that under some conditions, the activities of metal-reducing bacteria, such as S. oneidensis, could be exploited for the removal of Cr(VI) from CCC waste streams under appropriate conditions.  相似文献   

12.
While the toxicological effects of mercury (Hg) are well studied in mammals, little is known about the mechanisms of toxicity to bacterial cells lacking an Hg resistance (mer) operon. We determined that Shewanella oneidensis MR-1 is more sensitive to ionic mercury [Hg(II)] under aerobic conditions than in fumarate reducing conditions, with minimum inhibitory concentrations of 0.25 and 2 μM respectively. This increased sensitivity in aerobic conditions is not due to increased import, as more Hg is associated with cellular material in fumarate reducing conditions than in aerobic conditions. In fumarate reducing conditions, glutathione may provide protection, as glutathione levels decrease in a dose-dependent manner, but this does not occur in aerobic conditions. Hg(II) does not change the redox state of thioredoxin in MR1 in either fumarate reducing conditions or aerobic conditions, although thioredoxin is oxidized in Geobacter sulfurreducens PCA in response to Hg(II) treatment. However, treatment with 0.5 μM Hg(II) increases lipid peroxidation in aerobic conditions but not in fumarate reducing conditions in MR-1. We conclude that the enhanced sensitivity of MR-1 to Hg(II) in aerobic conditions is not due to differences in intracellular responses, but due to damage at the cell envelope.  相似文献   

13.
Hydrogen Metabolism in Shewanella oneidensis MR-1   总被引:1,自引:0,他引:1       下载免费PDF全文
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.  相似文献   

14.
The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min.  相似文献   

15.
The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min.  相似文献   

16.
Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment.  相似文献   

17.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

18.
Shewanella is a microbial genus that can oxidize lactate for the reduction of insoluble electron acceptors. This reduction is possible by either direct (cell-surface interaction, nanowires) or indirect (soluble redox mediators) mechanisms. However, the actual molecular identification of a nanowire has not been determined. Through mutational studies, Shewanella oneidensis MR-1 was analyzed for its ability to transfer electrons to an electrode after deletion of the structural pilin genes (ΔmshA-D) or the entire biosynthetic expression system (ΔmshH-Q) of one of its pilin complexes (Msh type IV pilus gene locus). The complete removal of the Msh complex (ΔmshH-Q) significantly decreased the current generated from a fuel cell compared to MR-1. However, the mutant with only extracellular Msh structural proteins removed (ΔmshA-D) was able to generate 80% of the current compared to MR-1. Thus, the intracellular and membrane bound Msh biogenesis complex is a pathway for extracellular electron transfer in S. oneidensis MR-1.  相似文献   

19.
Shewanella oneidensis MR-1 has the ability to inhale certain metals and chemical compounds and exhale these materials in an altered state; as a result, this microorganism has been widely applied in bioremediation protocols. However, the relevant characteristics of cell growth and biosynthesis of PuFAs have yet to be thoroughly investigated. Therefore, in this study, we have attempted to characterize the growth and fatty acid profiles ofS. oneidensis MR-1 under a variety of temperature conditions. The fastest growth ofS. oneidensis MR-1 was observed at 30°C, with a specific growth rate and doubling time of 0.6885 h−1 and 1.007 h. The maximum cell mass of this microorganism was elicited at a temperature of 4°C. The eicosapentaenoic acid (EPA) synthesis ofS. oneidensis MR-1 was evaluated under these different culture temperatures.S. oneidensis MR-1 was found not to synthesize EPA at temperatures in excess of 30°C, but was shown to synthesize EPA at temperatures below 30°C. The EPA content was found to increase with decreases in temperature. We then evaluated the EPA biosynthetic pathway, using a phylogenetic tree predicted on 16s rRNA sequences, and the homology of ORFs betweenS. oneidensis MR-1 andShewanella putrefaciens SCRC-2738, which is known to harbor a polyketide synthase (PKS)-like module. The phylogenetic tree revealed that MR-1 was very closely related to bothMoritella sp., which is known to synthesize DHA via a PKS-like pathway, andS. putrefaciens, which has been reported to synthesize EPA via an identical pathway. The homology between the PKS-like module ofS. putrefaciens SCRC-2738 and the entire genome ofS. oneidensis MR-1 was also analyzed, in order to mine the genes associated with the PKS-like pathway inS. oneidensis MR-1. A putative PKS-like module for EPA biosynthesis was verified by this analysis, and was also corroborated by the experimental finding thatS. oneidensis MR-1 was able to synthesize EPA without the expression of dihomo-γ-linoleic acid (DGLA) and arachidonic acid (AA) formed during EPA synthesis via the FAS pathway.  相似文献   

20.
In this work, the extracellular decolorization of aniline blue, a sulfonated triphenylmethane dye, by Shewanella oneidensis MR-1 was confirmed. S. oneidensis MR-1 showed a high capacity for decolorizing aniline blue even at a concentration of up to 1,000 mg/l under anaerobic conditions. Maximum decolorization efficiency appeared at pH?7.0 and 30 °C. Lactate was a better candidate of electron donor for the decolorization of aniline blue. The addition of nitrate, hydrous ferric oxide, or trimethylamine N-oxide all could cause a significant decline of decolorization efficiency. The Mtr respiratory pathway was found to be involved into the decolorization of aniline blue by S. oneidensis MR-1. The toxicity evaluation through phytotoxicity and genotoxicity showed that S. oneidensis MR-1 could decrease the toxicity of aniline blue during the decolorization process. Thus, this work may facilitate a better understanding on the degradation mechanisms of the triphenylmethane dyes by Shewanella and is beneficial to their application in bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号