共查询到20条相似文献,搜索用时 9 毫秒
1.
Galit Meshulam-Simon Sebastian Behrens Alexander D. Choo Alfred M. Spormann 《Applied microbiology》2007,73(4):1153-1165
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. 相似文献
2.
Low-temperature growth of Shewanella oneidensis MR-1 总被引:1,自引:0,他引:1
Abboud R Popa R Souza-Egipsy V Giometti CS Tollaksen S Mosher JJ Findlay RH Nealson KH 《Applied and environmental microbiology》2005,71(2):811-816
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of approximately 35 degrees C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature ( approximately 22 degrees C) MR-1 grows with a doubling time of about 40 min, but when moved from 22 degrees C to 3 degrees C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of approximately 67 h. In comparison to cells grown at 22 degrees C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22 degrees C. 相似文献
3.
Randa Abboud Radu Popa Virginia Souza-Egipsy Carol S. Giometti Sandra Tollaksen Jennifer J. Mosher Robert H. Findlay Kenneth H. Nealson 《Applied microbiology》2005,71(2):811-816
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of ≈35°C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature (≈22°C) MR-1 grows with a doubling time of about 40 min, but when moved from 22°C to 3°C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of ≈67 h. In comparison to cells grown at 22°C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22°C. 相似文献
4.
5.
6.
7.
Gödeke J Heun M Bubendorfer S Paul K Thormann KM 《Applied and environmental microbiology》2011,77(15):5342-5351
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. 相似文献
8.
9.
Heun M Binnenkade L Kreienbaum M Thormann KM 《Applied and environmental microbiology》2012,78(12):4400-4411
Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg(2+) or Mn(2+)) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. 相似文献
10.
11.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications. 相似文献
12.
We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m−2, 568 J of UVB m−2, 25 kJ of UVA m−2, and 558 J of solar UVB m−2, respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10−5 to 10−6. Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents. 相似文献
13.
14.
15.
Brittany D. Bennett Evan D. Brutinel Jeffrey A. Gralnick 《Applied and environmental microbiology》2015,81(22):7938-7944
Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe3+) results in the production of ferrous iron (Fe2+) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe2+ from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe2+. The export function of FeoE is specific for Fe2+, as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd2+, Co2+, Cu2+, Mn2+, Ni2+, or Zn2+). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd2+/Zn2+ or Fe2+/Zn2+ exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe2+ compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe2+ exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found. 相似文献
16.
17.
Ashley R. Brown Elon Correa Yun Xu Najla AlMasoud Simon M. Pimblott Royston Goodacre Jonathan R. Lloyd 《PloS one》2015,10(6)
Biogeochemical processes mediated by Fe(III)-reducing bacteria such as Shewanella oneidensis have the potential to influence the post-closure evolution of a geological disposal facility for radioactive wastes and to affect the solubility of some radionuclides. Furthermore, their potential to reduce both Fe(III) and radionuclides can be harnessed for the bioremediation of radionuclide-contaminated land. As some such sites are likely to have significant radiation fluxes, there is a need to characterise the impact of radiation stress on such microorganisms. There have, however, been few global cell analyses on the impact of ionizing radiation on subsurface bacteria, so here we address the metabolic response of S. oneidensis MR-1 to acute doses of X-radiation. UV/Vis spectroscopy and CFU counts showed that although X-radiation decreased initial viability and extended the lag phase of batch cultures, final biomass yields remained unchanged. FT-IR spectroscopy of whole cells indicated an increase in lipid associated vibrations and decreases in vibrations tentatively assigned to nucleic acids, phosphate, saccharides and amines. MALDI-TOF-MS detected an increase in total protein expression in cultures exposed to 12 Gy. At 95 Gy, a decrease in total protein levels was generally observed, although an increase in a putative cold shock protein was observed, which may be related to the radiation stress response of this organism. Multivariate statistical analyses applied to these FT-IR and MALDI-TOF-MS spectral data suggested that an irradiated phenotype developed throughout subsequent generations. This study suggests that significant alteration to the metabolism of S. oneidensis MR-1 is incurred as a result of X-irradiation and that dose dependent changes to specific biomolecules characterise this response. Irradiated S. oneidensis also displayed enhanced levels of poorly crystalline Fe(III) oxide reduction, though the mechanism underpinning this phenomenon is unclear. 相似文献
18.
Thormann KM Saville RM Shukla S Pelletier DA Spormann AM 《Journal of bacteriology》2004,186(23):8096-8104
Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we investigated S. oneidensis biofilms developing on glass surfaces in a hydrodynamic flow chamber system. After initial attachment, growth of microcolonies and lateral spreading of biofilm cells on the surface occurred simultaneously within the first 24 h. Once surface coverage was almost complete, biofilm development proceeded with extensive vertical growth, resulting in formation of towering structures giving rise to pronounced three-dimensional architecture. Biofilm development was found to be dependent on the nutrient conditions, suggesting a metabolic control. In global transposon mutagenesis, 173 insertion mutants out of 15,000 mutants screened were identified carrying defects in initial attachment and/or early stages in biofilm formation. Seventy-one of those mutants exhibited a nonswimming phenotype, suggesting a role of swimming motility or motility elements in biofilm formation. Disruption mutations in motility genes (flhB, fliK, and pomA), however, did not affect initial attachment but affected progression of biofilm development into pronounced three-dimensional architecture. In contrast, mutants defective in mannose-sensitive hemagglutinin type IV pilus biosynthesis and in pilus retraction (pilT) showed severe defects in adhesion to abiotic surfaces and biofilm formation, respectively. The results provide a basis for understanding microbe-mineral interactions in natural environments. 相似文献
19.
Howard EC Petersen ER Fitzgerald LA Sheehan PE Ringeisen BR 《Journal of microbiological methods》2011,87(3):320-324
The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min. 相似文献
20.
《Journal of microbiological methods》2012,88(3):320-324
The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min. 相似文献