首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined wound healing during regeneration of Drosophila wing imaginal discs fragments by confocal microscopy and assessed the role of components of the JNK pathway in this process. After cutting, columnar and peripodial epithelia cells at the wound edge start to close the wound through formation and contraction of an actin cable. This is followed by a zipping process through filopodial protrusions from both epithelia knitting the wound edges from proximal to distal areas of the disc. Activation of the JNK pathway is involved in such process. puckered (puc) expression is induced in several rows of cells at the edge of the wound, whereas absence of JNK pathway activity brought about by hemipterous, basket, and Dfos mutants impair wound healing. These defects are accompanied by lowered or loss of expression of puc. In support of a role of puc in wound healing, hep mutant phenotypes are rescued by reducing puc function, whereas overexpression of puc inhibits wound healing. Altogether, these results demonstrate a role for the JNK pathway in imaginal disc wound healing, similar to that reported for other healing processes such as embryonic dorsal closure, thoracic closure, and adult epithelial wound healing in Drosophila. Differences with such processes are also highlighted.  相似文献   

2.
Regeneration of an imaginal disc involves highly ordered proliferation and pattern regulation of the newly formed tissue. Although the general principles of imaginal disc regeneration have been extensively studied, knowledge of the underlying molecular mechanisms is far from complete. Results from other model organisms suggest that regeneration is the result of local recapitulation of the normal patterning genes. To analyze the dynamics of one major Drosophila patterning gene, decapentaplegic (dpp), in wing imaginal disc regeneration, a vital GFP reporter together with iontophoretic cell labeling were used. Our observations reveal that the restoration of compartment-border-specific dpp expression is a common event in imaginal disc regeneration. However, we did not find evidence of an upregulation of dpp expression during the regeneration process.  相似文献   

3.
Regen rating fragments of wing imaginal discs were cultured in vivo for various periods up to 1 week. At specified times the fragments were removed, macerated, and the resulting cell counts were compared to similar counts made on the contralateral intact disc. Significant growth was seen beginning on the second day if the hosts were transferred to fresh media daily, while seen only on Day 4 and not thereafter if hosts were maintained on the same media throughout the culture period.  相似文献   

4.
Summary When complementary fragments of an imaginal disc ofDrosophila are cultured for several days prior to metamorphosis, usually one fragment will regenerate while the other will duplicate. It has been proposed that wound healing plays an important part in disc regulation (French et al. 1976; Reinhardt et al. 1977) by initiating cell proliferation and determining the mode of regulation. We tried to delay the wound healing process by leaving a region of dead cells between the wound edges. In 06 fragments (Bryant 1975a) wound healing has occurred after 1–2 days of culture and the regeneration of missing structures after 2–4 days of culture. We observed that leaving a region of dead cells between the wound edges delays both wound healing and the regeneration of missing structures by 2 days.When disc fragments are cultured in female abdomens and then exposed to3H-thymidine to label replicating cells, then the label is found to be localised around the wound. We observed that delaying wound healing does not delay this localisation of labelled nuclei indicating that wound healing may not be required to initiate DNA replication.  相似文献   

5.
Fragments of the imaginal wing disc of Drosophila melanogaster were cultured in adult hosts before transfer to larvae for metamorphosis. Transdetermination occurred only after at least 2 weeks of culture in vivo, producing structures of the leg, antenna, head, and thoracic spiracle. Details of the transdetermined structures and their locations with respect to normal wing disc structures are reported. We present evidence suggesting that regulation can occur between the wing and the second leg imaginal discs, and we propose that many transdeterminations which involve neighboring discs may result from such interdisc regulation.  相似文献   

6.
7.
8.
Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling   总被引:5,自引:0,他引:5  
Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate apterous (ap) expression, thereby segregating the wing disc into D (ap-ON) and V (ap-OFF) compartments. Similarly, we demonstrate that EGFR signaling directs the expression of Iroquois Complex (Iro-C) genes in prospective notum cells, rendering them distinct from, and immiscible with, neighboring wing cells. However, EGFR signaling acts only early in development to heritably activate ap, whereas it is required persistently during subsequent development to maintain Iro-C gene expression. Hence, as the disc grows, the DV compartment boundary can shift ventrally, beyond the range of the instructive EGFR signal(s), in contrast to the notum-wing boundary, which continues to be defined by EGFR input.  相似文献   

9.
Cell proliferation in the imaginal wing disc of Drosophila has been analyzed by both pulse and chronic labeling with [3H]thymidine. We find neither spatial nor temporal variation in the fraction of S phase cells during the third instar. At or near the time of white prepupae formation the fraction of S phase cells falls sharply. Our chronic labeling experiments have demonstrated that almost all (and perhaps all) of the cells in a mid third instar wing disc are cycling. By examining sectioned material from such experiments we have found that the collumnar epithelial cell and the adepithetial cell populations become labeled with similar kinetics. The peripodial membrane cell population becomes labeled more slowly. We have also obtained estimates of cell cycle parameters for the imaginal wing disc cells.  相似文献   

10.
The subdivision of the Drosophila wing imaginal disc into dorsoventral (DV) compartments and limb-body wall (wing-notum) primordia depends on Epidermal Growth Factor Receptor (EGFR) signaling, which heritably activates apterous (ap) in D compartment cells and maintains Iroquois Complex (Iro-C) gene expression in prospective notum cells. We examine the source, identity and mode of action of the EGFR ligand(s) that specify these subdivisions. Of the three known ligands for the Drosophila EGFR, only Vein (Vn), but not Spitz or Gurken, is required for wing disc development. We show that Vn activity is required specifically in the dorsoproximal region of the wing disc for ap and Iro-C gene expression. However, ectopic expression of Vn in other locations does not reorganize ap or Iro-C gene expression. Hence, Vn appears to play a permissive rather than an instructive role in organizing the DV and wing-notum segregations, implying the existance of other localized factors that control where Vn-EGFR signaling is effective. After ap is heritably activated, the level of EGFR activity declines in D compartment cells as they proliferate and move ventrally, away from the source of the instructive ligand. We present evidence that this reduction is necessary for D and V compartment cells to interact along the compartment boundary to induce signals, like Wingless (Wg), which organize the subsequent growth and differentiation of the wing primordium.  相似文献   

11.
Teleman AA  Cohen SM 《Cell》2000,103(6):971-980
The secreted signaling protein Dpp acts as a morphogen to pattern the anterior-posterior axis of the Drosophila wing. Dpp activity is required in all cells of the developing wing imaginal disc, but the ligand gradient that supports this activity has not been characterized. Here we make use of a biologically active form of Dpp tagged with GFP to examine the ligand gradient. Dpp-GFP forms an unstable extracellular gradient that spreads rapidly in the wing disc. The activity gradient visualized by MAD phosphorylation differs in shape from the ligand gradient. The pMAD gradient adjusted to compartment size when this was experimentally altered. These observations suggest that the Dpp activity gradient may be shaped at the level of receptor activation.  相似文献   

12.
Kirchner J  Gross S  Bennett D  Alphey L 《Genetics》2007,175(4):1741-1749
Drosophila flapwing (flw) codes for serine/threonine protein phosphatase type 1β (PP1β). Regulation of nonmuscle myosin activity is the single essential flw function that is nonredundant with the three closely related PP1α genes. Flw is thought to dephosphorylate the nonmuscle myosin regulatory light chain, Spaghetti Squash (Sqh); this inactivates the nonmuscle myosin heavy chain, Zipper (Zip). Thus, strong flw mutants lead to hyperphosphorylation of Sqh and hyperactivation of nonmuscle myosin activity. Here, we show genetically that a Jun N-terminal kinase (JNK) mutant suppresses the semilethality of a strong flw allele. Alleles of the JNK phosphatase puckered (puc) genetically enhance the weak allele flw1, leading to severe wing defects. Introducing a mutant of the nonmuscle myosin-binding subunit (Mbs) further enhances this genetic interaction to lethality. We show that puc expression is upregulated in wing imaginal discs mutant for flw1 and pucA251 and that this upregulation is modified by JNK and Zip. The level of phosphorylated (active) JNK is elevated in flw1 enhanced by puc. Together, we show that disruption of nonmuscle myosin activates JNK and puc expression in wing imaginal discs.  相似文献   

13.
14.
The fate of an imaginal disc cell of Drosophila can be affected by the associations and interactions that it has with other cells in the disc. A fragment of an imaginal disc, not regenerating under conditions allowing a complementary fragment to do so, can be stimulated to regenerate by interactions with cells of the complementary fragment [Haynie, J. L., and Bryant, P. J. (1976) Nature (London)259, 659–662]. We report here that one nonregenerating fragment of an imaginal wing disc cannot be stimulated to regenerate by interactions with cells from other parts of the disc. This fragment, containing the anlagen of the distal wing, fails to regenerate proximally when combined with a proximal fragment even though this association stimulates some proximal fragments to regenerate distally. We suggest that this may be a phenomenon similar to that observed in cockroach legs by H. Bohn (1970, Wilhelm Roux Arch. Entwicklungsmech. Organismen165, 303–341), in which proximal regeneration from grafted distal leg segments proceeds only to a limited extent. We consider the possibility that there exist reiterated sets of positional information arranged concentrically in the wing disc.  相似文献   

15.
Distribution of the enzyme aldehyde oxidase (AO) within the pouch of the mature wing disc is precise and differential. General locations of compartmental boundaries have been identified by fate mapping and studies of AO distribution. The suspected locations of the boundaries were verified by analyzing the distribution of AO-negative cells within an AO-stained background in gynandromorphs and in X-ray-induced clones of AO-negative cells. The anterior/posterior border appeared slightly anterior to the junction of the AO+ anterior presumptive wing surfaces and AO? posterior wing surfaces. A narrow band of AO+ cells extending proximodistally on both presumptive wing surfaces belongs to the posterior compartment. Two dorsal/ventral (dor./vent.) restrictions were found. The dor./vent. restriction equivalent to the dor./vent. border found in the adult wing was located at the ventral most edge of the AO-stained presumptive wing margin. A second restriction which was less strictly obeyed was found on the dorsal edge of the wing margin. We conclude that the whole presumptive wing margin is part of the dorsal compartment. Within the anterior wing margin an intensively stained oval was also found to be clonally restrictive. Therefore, territories were found within the prospective wing margin for which no such features have been identified in the adult Drosophila melanogaster wing.  相似文献   

16.
Proteomic analysis of the wing imaginal discs of Drosophila melanogaster   总被引:1,自引:0,他引:1  
Alonso J  Santarén JF 《Proteomics》2005,5(2):474-489
We have combined high-resolution two-dimensional (2-D) gel electrophoresis and mass spectrometry with the aim of identifying proteins represented in the 2-D gel database of the wing imaginal discs of Drosophila melanogaster. First, we obtained a high-resolution 2-D gel pattern of [35S]methionine + [35S]cysteine-labeled polypeptides of Schneider cells, a permanent cell line of Drosophila embryonic origin, and compared it with the standard pattern of polypeptides of the wing imaginal disc. These studies reveal qualitative and quantitative differences between the two samples, but have more than 600 polypeptides in common. Second, we carried out preparative 2-D polyacrylamide gel electrophoresis using Schneider cells mixed with radioactively labeled wing imaginal discs in order to isolate some of the shared polypeptides and characterize them by matrix-assisted laser desorption/ionization-time of flight MALDI-TOF analysis. Using this strategy we identified 100 shared proteins represented in the database, and in each case confirmed their identity by MALDI-TOF/TOF analysis.  相似文献   

17.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

18.
The mechanisms that control organ growth are among the least known in development. This is particularly the case for the process in which growth is arrested once final size is reached. We have studied this problem in the wing disc of Drosophila, the developmental and growth parameters of which are well known. We have devised a method to generate entire fast-growing Minute(+) (M(+)) discs or compartments in slow developing Minute/+ (M/+) larvae. Under these conditions, a M(+) wing disc gains at least 20 hours of additional development time. Yet it grows to the same size of Minute/+ discs developing in M/+ larvae. We have also generated wing discs in which all the cells in either the anterior (A) or the posterior (P) compartment are transformed from M/+ to M(+). We find that the difference in the cell division rate of their cells is reflected in autonomous differences in the developmental progression of these compartments: each grows at its own rate and manifests autonomous regulation in the expression of the developmental genes wingless and vestigial. In spite of these differences, ;mosaic' discs comprising fast and slow compartments differentiate into adult wings of the correct size and shape. Our results demonstrate that imaginal discs possess an autonomous mechanism with which to arrest growth in anterior and posterior compartments, which behave as independent developmental units. We propose that this mechanism does not act by preventing cell divisions, but by lengthening the division cycle.  相似文献   

19.
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.  相似文献   

20.
Drosophila imaginal discs are monolayered epithelial invaginations that grow during larval stages and evert at metamorphosis to assemble the adult exoskeleton. They consist of columnar cells, forming the imaginal epithelium, as well as squamous cells, which constitute the peripodial epithelium and stalk (PS). Here, we uncover a new morphogenetic/cellular mechanism for disc eversion. We show that imaginal discs evert by apposing their peripodial side to the larval epidermis and through the invasion of the larval epidermis by PS cells, which undergo a pseudo-epithelial-mesenchymal transition (PEMT). As a consequence, the PS/larval bilayer is perforated and the imaginal epithelia protrude, a process reminiscent of other developmental events, such as epithelial perforation in chordates. When eversion is completed, PS cells localize to the leading front, heading disc expansion. We found that the JNK pathway is necessary for PS/larval cells apposition, the PEMT, and the motile activity of leading front cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号