首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a period of neglect, there has been a resurgence of interest in Drosophila imaginal discs as a model with which to analyze the relationships between growth and pattern formation during regeneration. To broaden our understanding of this process, we used cell lineage techniques to trace the origin of blastema cells and the early and late boundaries of the blastema in regenerating 3/4 wing disc fragments, examined the distribution of S-phase, mitotic and dead cells, and undertook clonal analysis to determine the topology of cell proliferation and its relationship to pattern formation. Using lineage tagging with the JNK phosphatase puckered (puc), we demonstrate that a substantial number of blastema cells arise from cells in which JNK is activated. Furthermore, we show that DNA synthesis and mitosis are activated well before wound healing is completed, in a region where the JNK pathway is activated; later, DNA synthesis and mitosis are observed in scattered cells throughout the blastema. Finally, clonal analysis shows a close relationship between the size and shape of clones and disparities in the positional values of the apposed surfaces.  相似文献   

2.
Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.  相似文献   

3.
We have examined wound healing during regeneration of Drosophila wing imaginal discs fragments by confocal microscopy and assessed the role of components of the JNK pathway in this process. After cutting, columnar and peripodial epithelia cells at the wound edge start to close the wound through formation and contraction of an actin cable. This is followed by a zipping process through filopodial protrusions from both epithelia knitting the wound edges from proximal to distal areas of the disc. Activation of the JNK pathway is involved in such process. puckered (puc) expression is induced in several rows of cells at the edge of the wound, whereas absence of JNK pathway activity brought about by hemipterous, basket, and Dfos mutants impair wound healing. These defects are accompanied by lowered or loss of expression of puc. In support of a role of puc in wound healing, hep mutant phenotypes are rescued by reducing puc function, whereas overexpression of puc inhibits wound healing. Altogether, these results demonstrate a role for the JNK pathway in imaginal disc wound healing, similar to that reported for other healing processes such as embryonic dorsal closure, thoracic closure, and adult epithelial wound healing in Drosophila. Differences with such processes are also highlighted.  相似文献   

4.
Following tissue damage the immune response, including inflammation, has been considered an inevitable condition to build the host defense against invading pathogens. The recruitment of innate immune leukocytes to injured tissue is observed in both vertebrates and invertebrates. However, it is still not conclusive whether the inflammatory response is also indispensable for the wound healing process by itself, in addition to its role in microbial clearance. In this study we determine the requirement of innate immune cells, both hemocytes and fat body cells, in Drosophila imaginal disc regeneration. We investigate wound healing and regenerative cell proliferation of damaged imaginal discs under immunodeficient conditions. To delay development of Drosophila at matured third instar larval stage we used a sterol-mutant erg2 knock-out yeast strain in the medium. This dietary-controlled developmental arrest allowed us to generate larvae free of immune cells without interfering with their larval development. In addition, this approach allowed uncoupling regenerative cell proliferation of damaged discs from their normal developmental growth. We furthermore examined the regenerative cell proliferation of fragmented imaginal discs by transplantation into host flies deficient of immune cells. We demonstrate that the damaged/fragmented discs in immune cells deficient conditions still exhibit regenerative cell proliferation comparable to those of control samples. These results suggest that recruitment of immune cells is not a prerequisite for the regenerative growth of damaged imaginal discs.  相似文献   

5.
Drosophila imaginal discs, the primordia of the adult fly appendages, are an excellent system for studying developmental plasticity. Cells in the imaginal discs are determined for their disc-specific fate (wingness, legness) during embryogenesis. Disc cells maintain their determination during larval development, a time of extensive growth and proliferation. Only when prompted to regenerate do disc cells exhibit lability in their determined identity. Regeneration in the disc is mediated by a localized region of cell division, known as the regeneration blastema. Most regenerating disc cells strictly adhere to their disc-specific identity; some cells however, switch fate in a phenomenon known as transdetermination. Similar regeneration and transdetermination events can be induced in situ by misexpression of the signaling molecule wingless. Recent studies indicate that the plasticity of disc cells during regeneration is associated with high morphogen activity and the reorganization of chromatin structure. Here we provide both a historical perspective of imaginal disc transdetermination, as well as discuss recent findings on how imaginal disc cells acquire developmental plasticity and multipotency. We also highlight how an understanding of imaginal disc transdetermination can enhance an understanding of developmental potency exhibited by stem cells.  相似文献   

6.
Regeneration of an imaginal disc involves highly ordered proliferation and pattern regulation of the newly formed tissue. Although the general principles of imaginal disc regeneration have been extensively studied, knowledge of the underlying molecular mechanisms is far from complete. Results from other model organisms suggest that regeneration is the result of local recapitulation of the normal patterning genes. To analyze the dynamics of one major Drosophila patterning gene, decapentaplegic (dpp), in wing imaginal disc regeneration, a vital GFP reporter together with iontophoretic cell labeling were used. Our observations reveal that the restoration of compartment-border-specific dpp expression is a common event in imaginal disc regeneration. However, we did not find evidence of an upregulation of dpp expression during the regeneration process.  相似文献   

7.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

8.
Apoptotic cells of Drosophila not only activate caspases, but also are able to secrete developmental signals like Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) before dying. Since Dpp and Wg are secreted in growing tissues and behave as growth factors, it was proposed that they play a role in compensatory proliferation, the process by which a growing blastema can restore normal size after massive apoptosis. We discuss recent results showing that there is normal compensatory proliferation in the absence of Dpp/Wg signaling, thus indicating it has no significant role in the process. Furthermore, we argue that Dpp/Wg signaling is not a resident feature of apoptotic cells, but a side effect of the necessary activation of the JNK pathway. Nevertheless, the ectopic JNK/Dpp/Wg signaling may have an important role in tissue regeneration. Recent work in other organisms suggests that paracrine signaling from apoptotic cells may be of general significance in wound healing and tissue regeneration in metazoans.  相似文献   

9.
Regeneration is a complex process that requires a coordinated genetic response to tissue loss. Signals from dying cells are crucial to this process and are best understood in the context of regeneration following programmed cell death, like apoptosis. Conversely, regeneration following unregulated forms of death, such as necrosis, have yet to be fully explored. Here, we have developed a method to investigate regeneration following necrosis using the Drosophila wing imaginal disc. We show that necrosis stimulates regeneration at an equivalent level to that of apoptosis-mediated cell death and activates a similar response at the wound edge involving localized JNK signaling. Unexpectedly, however, necrosis also results in significant apoptosis far from the site of ablation, which we have termed necrosis-induced apoptosis (NiA). This apoptosis occurs independent of changes at the wound edge and importantly does not rely on JNK signaling. Furthermore, we find that blocking NiA limits proliferation and subsequently inhibits regeneration, suggesting that tissues damaged by necrosis can activate programmed cell death at a distance from the injury to promote regeneration.  相似文献   

10.
Cell proliferation is required for tissue regeneration, yet the dynamics of proliferation during regeneration are not well understood. Here we investigated the proliferation of eye and leg regeneration in fragments of Drosophila imaginal discs. Using twin spot clones, we followed the proliferation and fates of sister cells arising from the same mother cell in the regeneration blastema. We show that the mother cell gives rise to two sisters that participate equally in regeneration. However, when cells switch disc identity and transdetermine to another fate, they fail to turn off the cell cycle and continue dividing long after regeneration is complete. We further demonstrate that the regeneration blastema moves as a sweep of proliferation, in which cells are displaced. Our results suggest that regenerating cells stop dividing once the missing parts are formed, but if they undergo a switch in cell fate, the proliferation clock is reset.  相似文献   

11.
We investigated the distribution of S-phase cells during regeneration of the imaginal wing disc of Drosophila melanogaster following excision of 30 degrees, 90 degrees, and 150 degrees sectors of tissue. The fragments were cultured in adult abdomens for 1-5 days, labeled in vitro with tritiated thymidine, serially sectioned, and subjected to autoradiography. There was negligible thymidine incorporation in unoperated controls and in the undamaged parts of the operated discs, indicating that DNA synthesis in undamaged tissue is terminated during the first day of the culture period. Almost all of the fragments from which tissue had been removed, as well as controls which were simply cut without the removal of any tissue, showed a cluster of labeled cells (blastema) even after only 1 day of culture. The blastemas in control discs were short-lived, with over 50% of these discs showing no blastema by the third day in culture. Blastemas in discs from which sectors were removed were more persistent; the time at which 50% of the fragments no longer showed a blastema was 4 days for the -30 degrees fragments, 5 days for the -90 degrees fragments, and greater than 5 days for the -150 degrees fragments. The average blastema size, measured as number of labeled cells, was directly related to the amount of tissue removed, and in most cases did not change significantly during the culture period. Both wound edges incorporated tritiated thymidine initially and the S-phase cells remained tightly clustered throughout regeneration; maximum blastema width varied from about 8 to 25 cell diameters. The results are consistent with the idea that regenerative cell proliferation is stimulated and maintained by positional information discontinuities, and terminated when these discontinuities are resolved by the addition of an appropriate number of new cells.  相似文献   

12.
Fragments of imaginal discs of the fruitfly Drosophila undergo growth and pattern regulation when cultured in vivo in adult female hosts for several days prior to metamorphosis in host larvae. Pattern regulation results in either regeneration of excised pattern elements or duplication of elements whose fate map positions lay within the fragment. Initial wound healing along the cut edge of a fragment is thought to be a crucial first step in the process of pattern regulation. We have examined the capacity for wound healing and pattern regulation of fragments (distal halves) of the wing disc cultured in vitro, using the culture system recently reported to support extensive growth and transdetermination of slightly wounded whole imaginal discs in vitro. Our results suggest that disc fragments and whole discs apparently respond differently in the culture system. With disc fragments, wound healing did not occur in vitro. When fragments were first cultured overnight in adult female hosts to allow initial wound healing prior to explantation in vitro, then some volume increase and regeneration of excised portions occurred during 2–3 weeks of culture in vitro. The extent of apparent growth was much less than that reported for whole discs, and the frequency of regeneration in vitro (19%), while highly significant relative to controls not cultured in vitro (0%), was much less than that observed for fragments cultured in vivo (84%). Furthermore the extent of regeneration which occurred in vitro was considerably smaller than that which occurs during regeneration in vivo.  相似文献   

13.
Previously we demonstrated that BMP signaling is required for endogenous digit tip regeneration, and that treatment with BMP-2 or -7 induces a regenerative response following amputation at regeneration-incompetent levels (Yu et al., 2010 and Yu et al., 2012). Both endogenous regeneration and BMP-induced regeneration are associated with the transient formation of a blastema, however the formation of a regeneration blastema in mammals is poorly understood. In this study, we focus on how blastema cells respond to BMP signaling during neonatal digit regeneration in mice. First, we show that blastema cells retain regenerative properties after expansion in vitro, and when re-introduced into the amputated digit, these cells display directed migration in response to BMP-2. However, in vitro studies demonstrate that BMP-2 alone does not influence blastema cell migration, suggesting a requirement of another pivotal downstream factor for cell recruitment. We show that blastema cell migration is stimulated by the cytokine, SDF-1α, and that SDF-1α is expressed by the wound epidermis as well as endothelial cells of the blastema. Blastema cells express both SDF-1α receptors, CXCR4 and CXCR7, although the migration response is inhibited by the CXCR4-specific antagonist, AMD3100. Mice treated with AMD3100 display a partial inhibition of skeletal regrowth associated with the regeneration response. We provide evidence that BMP-2 regulates Sdf-1α expression in endothelial cells but not cells of the wound epidermis. Finally, we show that SDF-1α-expressing COS1 cells engrafted into a regeneration-incompetent digit amputation wound resulted in a locally enhanced population of CXCR4 positive cells, and induced a partial regenerative response. Taken together, this study provides evidence that one downstream mechanism of BMP signaling during mammalian digit regeneration involves activation of SDF-1α/CXCR4 signaling by endothelial cells to recruit blastema cells.  相似文献   

14.
Many diverse animal species regenerate parts of an organ or tissue after injury. However, the molecules responsible for the regenerative growth remain largely unknown. The screen reported here aimed to identify genes that function in regeneration and the transdetermination events closely associated with imaginal disc regeneration using Drosophila melanogaster. We screened a collection of 97 recessive lethal P-lacZ enhancer trap lines for two primary criteria: first, the ability to dominantly modify wg-induced leg-to-wing transdetermination and second, for the activation or repression of the lacZ reporter gene in the blastema during disc regeneration. Of the 97 P-lacZ lines, we identified six genes (Krüppel-homolog-1, rpd3, jing, combgap, Aly and S6 kinase) that met both criteria. Five of these genes suppress, while one enhances, leg-to-wing transdetermination and therefore affects disc regeneration. Two of the genes, jing and rpd3, function in concert with chromatin remodeling proteins of the Polycomb Group (PcG) and trithorax Group (trxG) genes during Drosophila development, thus linking chromatin remodeling with the process of regeneration.  相似文献   

15.
The robust regenerative abilities of planarians absolutely depend on a unique population of pluripotent stem cells called neoblasts, which are the only mitotic somatic cells in adult planarians and are responsible for blastema formation after amputation. Little is known about the molecular mechanisms that drive blastema formation during planarian regeneration. Here we found that treatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 blocked the entry of neoblasts into the M-phase of the cell cycle, while allowing neoblasts to successfully enter S-phase in the planarian Dugesia japonica. The rapid and efficient blockage of neoblast mitosis by treatment with the JNK inhibitor provided a method to assess whether temporally regulated cell cycle activation drives blastema formation during planarian regeneration. In the early phase of blastema formation, activated JNK was detected prominently in a mitotic region (the "postblastema") proximal to the blastema region. Furthermore, we demonstrated that undifferentiated mitotic neoblasts in the postblastema showed highly activated JNK at the single cell level. JNK inhibition by treatment with SP600125 during this period caused a severe defect of blastema formation, which accorded with a drastic decrease of mitotic neoblasts in regenerating animals. By contrast, these animals still retained many undifferentiated neoblasts near the amputation stump. These findings suggest that JNK signaling plays a crucial role in feeding into the blastema neoblasts for differentiation by regulating the G2/M transition in the cell cycle during planarian regeneration.  相似文献   

16.
Summary When complementary fragments of an imaginal disc ofDrosophila are cultured for several days prior to metamorphosis, usually one fragment will regenerate while the other will duplicate. It has been proposed that wound healing plays an important part in disc regulation (French et al. 1976; Reinhardt et al. 1977) by initiating cell proliferation and determining the mode of regulation. We tried to delay the wound healing process by leaving a region of dead cells between the wound edges. In 06 fragments (Bryant 1975a) wound healing has occurred after 1–2 days of culture and the regeneration of missing structures after 2–4 days of culture. We observed that leaving a region of dead cells between the wound edges delays both wound healing and the regeneration of missing structures by 2 days.When disc fragments are cultured in female abdomens and then exposed to3H-thymidine to label replicating cells, then the label is found to be localised around the wound. We observed that delaying wound healing does not delay this localisation of labelled nuclei indicating that wound healing may not be required to initiate DNA replication.  相似文献   

17.
Upon fragmentation of a leg imaginal disc, cells near parts of the wounded surface are reprogrammed and form a blastema. This occurs without a change in fate and without the direct contact of the two wounded surfaces (G. H. Karpen and G. Schubiger, Nature (London) 294, 744-747, 1981). Two phases of the cell cycle have now been analyzed for several areas of disc fragments prior to and during wound healing. A mitotic index was used to compare the location of cell division, and autoradiography was used to reveal patterns of DNA synthesis. In contrast to the uniform division pattern in noncultured fragments, more dividing cells were observed near the two wound surfaces after 1 day of in vivo culture. During the second day, wound healing began and mitotic activity increased dramatically near both wound areas, and decreased in distant areas. Three and a half days of culture led to more complete wound closure and only cells on one site continued to show the highest frequency of labeled cells. It is concluded that changes in patterns of DNA synthesis and an increase in cell division begin prior to wound closure. This proliferation is consistent with the morphological changes and regulative behavior observed. In addition, the role of compartmental identity during regulation was tested. After wound closure began an increase in mitotic activity near wounds in the anterior compartment was observed whereas such an increase in division level was not seen in posterior cells near a wound.  相似文献   

18.
Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.  相似文献   

19.
Limb regenerative potential in urodeles seems to vary among different species. We observed that Triturus vulgaris meridionalis regenerate their limbs significantly faster than T. carnifex, where a long gap between the time of amputation and blastema formation occurs, and tried to identify cellular and molecular events that may underlie these differences in regenerative capability. Whereas wound healing is comparable in the two species, formation of an apical epidermal cap (AEC), which is required for blastema outgrowth, is delayed for approximately three weeks in T. carnifex. Furthermore, fewer nerve fibres are present distally early after amputation, consistent with the late onset of blastemal cell proliferation observed in T. carnifex. We investigated whether different expression of putative blastema mitogens, such as FGF1 and FGF2, in these species may underlie differences in the progression of regeneration. We found that whereas FGF1 is detected in the epidermis throughout the regenerative process, FGF2 onset of expression in the wound epidermis of both species coincides with AEC formation and initiation of blastemal cell proliferation, which is delayed in T. carnifex, and declines thereafter. In vitro studies showed that FGF2 activates MCM3, a factor essential for DNA replication licensing activity, and can be produced by blastemal cells themselves, indicating an autocrine action. These results suggest that FGF2 plays a key role in the initiation of blastema growth.  相似文献   

20.
To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号