首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The terrestrial crabsGeograpsus grayi, Geograpsus crinipes, Cardisoma hirtipes andGecarcoidea natalis have a reduced number of gills and show a reduced planar gill surface (SA) compared to aquatic species. Gill lamellae are stiffened and thickened (increasing blood/gas (BG) diffusion distances) and nodules maintain wide spacing between lamellae. Haemolymph is directed through the gill lamellae by rows of pillar cells and in the afferent region an intralamellar septum splits the haemolymph into two parallel networks. Gaps in the lines of pillar cells allow movement of haemolymph between adjacent channels. The afferent vessel distributes haemolymph to the lamella via a number of direct channels including the marginal canal and in large gills with the aid of a long, forked sinus which supplies the ventral and central regions of the lamellae. The marginal canal functions in both distribution and collection of haemolymph; the role varies with species. Potential flow-control sites were identified at the junctions between afferent and efferent areas and where the efferent channels enter the efferent branchial vessel. Each gill receives a branch from the sternal artery which supplies all the lamellae. Transport epithelia is the principal cell type in the gills of all species examined though its location varies between species, either being confined to certain gills or specific parts of the lamellae.The gill lamellae of air-breathing crabs are clearly modified to breathe air (stiffening and presence of nodules), though the overall contribution of the gills to gas exchange has been reduced (smaller SA and longer BG diffusion distances). The role of the gills in air-breathing crabs thus appears to have switched from one of an efficient aquatic gas-exchanger (thin with large surface area) and transport tissue, to one that is predominantly set up for ion-regulation.Abbreviations a afferent branchial vessel - ac afferent channels - art arteriole - ass artifactual subcuticular space - bl basal lamina - c cuticle - col collagen - ct connective tissue - e efferent branchial vessel - ec efferent channels - epi epithelium - f folds - g Glycogen - h haemolymph - hc haemocyte - is intralamellar septum - m marginal canal - mi mitochondria - mt microtubules - n nucleus - p pillar cell - s shaft of efferent vessel - sd septate desmosome  相似文献   

2.
The five gill pairs of Mictyris longicarpus have the lowest weight specific area reported for any crab. The cuticle of the gill lamellae is lined with epithelial cells which have structural features characteristic of iontransporting cells. Pillar cells are regularly distributed in the epithelium and serve to maintain separation of the two faces of the lamellae. The central hemolymph space is divided into two sheets by a fenestrated septum of connective tissue cells. The dorsal portion of the marginal canal of each lamella receives hemolymph from the afferent branchial vessel and distributes it to the lamella while the ventral portion of the canal collects hemolymph and returns it to the efferent branchial vessel. The lung is formed from the inner lining of the branchiostegite and an outgrowth of this, the epibranchial membrane. Surface area is increased by invagination of the lining which forms branching, blind-ending pores, giving the lung a spongy appearance. The cuticle lining the lung is thin and the underlyng epithelial cells are extremely attenuated, giving a total hemolymph/gas distance of 90–475 nm. Venous hemolymph is directed close to the gas exchange surface by specialised connective tissue cells and by thin strands of connective tissue which run parallel to the cuticle. Air sacs are anchored in position by paired pillar cells filled with microtubules. Afferent hemolymph is supplied from the eye sinus, dorsal sinus, and ventral sinus. Afferent vessels interdigitate closely with efferent vessels just beneath the respiratory membrane. The two systems are connected by a “perpendicular system” which ramifies between the airways and emerges to form a sinus beneath the carapace and then flows back between the air sacs to the efferent vessels. The afferent side of the perpendicular system is the major site of gas exchange. Efferent vessels return via large pulmonary veins to the pericardial cavity. PaO2 levels were high (95.5 Torr), indicating highly efficient gas exchange.  相似文献   

3.
Ultrastructural observations on the gills of polychaetes   总被引:1,自引:0,他引:1  
The gills of several polychaete species belonging to 9 families were studied by scanning and transmission electron microscopy. The surface epithelium is covered by a thin cuticle which is invaded by microvilli penetrating the epicuticle in certain species. Some epithelial cells bear cilia, others are mucus-producing cells. The ciliary cells may be arranged in rows and maintain a constant flow of water over the gills. The distance between external water and blood stream differs considerably according to the species investigated. InMalacoceros the gills are characterized by closed afferent and efferent subepithelial vessels, which correspond to tubular invaginations of the coelomic wall. These vessels are lined by the basement lamina of the coelothelial cells, which are of the epitheliomuscular type. The vessels are open in the gills of other polychaetes and release the blood stream into a system of spaces immediately below the epidermis (e.g. in the branchial lamellae ofPectinaria andTerebellides). In several species the blood comes into very intimate contact with the cuticle (e.g. in the gill filaments ofDendronereides), but also in these animals both are separated by a very small epidermal layer.Supported by DFG Sto 75/3-6.  相似文献   

4.
The gills of the African freshwater crab Potamon niloticus -Ortmann have been investigated by scanning and transmission electron microscopy. Potamon has seven pairs of phyllobranchiate gills contained in the branchial chambers. From the central axis of the gills arise bilaterally situated thin flaps, the lamellae. The afferent branchial vessel (the epibranchial vessel) is located on the dorsal aspect of the gill arch and the efferent vessel (the hypobrancial vessel) on the ventral side. Between these two blood vessels, the blood percolates through the lamellar vascular channels where it is oxygenated. The lamellae consist of an epithelial cell layer covered by a thin cuticle which consists of tightly fused but distinct layers. The epithelial cells approach each other at regular intervals and fuse in the middle of the lamellar sinus delineating the vascular channels. Apical profuse membranous infoldings and numerous mitochondria characterize the epithelial cells, features typical of cells involved in active transport of macro- and micromolecules. In Potamon , however, there were no distinct gas exchange and osmoregulatory regions of the gills. On average, the cuticle was 0.78 μm thick while the epithelial cell was 6 μm. Cells that were morphologically similar to the renal glomerular podocytes of the vertebrates were observed in the efferent gill vessel of Potamon. These cells have been said to be phagocytic and may play an important defensive role in the crustaceans. Although basically the morphology of the gills of Potamon is similar to that of the other decapods, fine structural differences were evident as would be intuitively expected in a group of animals that has undergone such remarkable adaptive radiation.  相似文献   

5.
Summary Arteriovenous anastomoses (AVAs) in the afferent region of trout gill filaments originate from two small filament arteries (Fromm's arteries), which parallel the main afferent filament vessel on either side. As in the efferent filament arteries the origin of AVAs is bordered by specialized endothelial cells. Fromm's arteries originate from efferent filament or branchial arteries. A few extremely narrow connections between the afferent filament artery and Fromm's arteries (= afferent shunts) do exist in some gill filaments. Nevertheless, the AVAs in the afferent filament region carry mainly arterialized blood, or blood plasma, to the central venous sinus of the filament.Supported by the Deutsche Forschungsgemeinschaft (Vo 229/1)  相似文献   

6.
The branchial vascular anatomy of Urolophus mucosus and U. paucimaculatus was studied by scanning electron microscopical examination of critical-point-dried tissue or of vascular corrosion casts. The vasculature could be divided into arterioarterial and arteriovenous pathways, which channel the flow of blood through the gills. The arterioarterial pathway consists of an afferent branchial artery which gives rise to afferent distributing arteries that run through the tissues of the interbranchial septum and supply the afferent filament arteries of several filaments. Afferent filament arteries open regularly into a corpus cavernosum in the core of the filament; unlike other elasmobranchs no septal corpora cavernosa are found. At the tip of the filament, channels of the corpus cavernosum connect to a channel which passes across the distal end of the filament from afferent to efferent side. This channel always connects to the afferent filament artery, and in many filaments it connects to the efferent filament artery as well. In addition, a vascular arcade connects all the afferent filament arteries along the entire length of each hemibranch. The filament corpus cavernosum supplies the secondary lamellae. The lamellae drain into efferent lamellar arterioles which in turn drain into the efferent filament artery and the efferent branchial artery. The vascular anatomy of the arteriovenous pathway is similar to that described in other elasmobranchs and consists of arteriovenous anastomoses, found only arising from efferent arterial circulation, and the venolymphatic system, which is composed of the central venous sinus and the companion vessels.  相似文献   

7.
Gnathiid isopod praniza larvae were found to infect the epaulette shark Hemiscyllium ocellatum. All sharks carried larvae on their external body surface, with the preferred attachment site in both sexes around the cloaca (P<0.05). The claspers were the second site of preference in male sharks. Within the buccal and branchial cavities, about 16% of larvae were attached to the roof and floor of the mouth and 84% attached to the gills. A significant positive correlation existed between larval number and fish size. Histological examination showed that larval attachment in the buccal cavity elicited variable responses, the most severe being a loss of epithelium and compression of underlying tissue. No host cellular response or tissue proliferation was observed. Praniza attached preferentially to the efferent side of gill filaments (relative to blood flow), and caused loss of epithelium, compression of tissue, and a small amount of connective tissue proliferation. Attachment to the gill septum or to the afferent side of the gill filament caused lamellar disruption, a cellular inflammatory response, and connective tissue proliferation. Scanning electron microscopy showed little obvious praniza-induced gill damage, other than localised tissue distortion to form "pockets" around larvae attached between filaments. The results suggest that praniza larvae do not cause sufficient tissue damage to adversely affect the health of this shark species.  相似文献   

8.
Arenicola marina gills are hollow, branched, body outgrowths with a central coelomic cavity and afferent and efferent vessels. The gill surface area per unit body weight is about 4 cm2/g wet weight. The blood vascular system anatomy differs from the tip to the base of the gill. In the distal branches of the gill the superficial afferent and efferent vessels are joined by connecting vessels. All vessels arise as spacings between the basal laminae of the thin epidermis and of the coelomic myoepithelium. The contractile part of this epithelium mainly borders the afferent and efferent vessels, whereas pedicel-like cytoplasmic processes extend from the cell bodies and mainly line the connecting vessels. In the proximal branches of the gill the afferent and efferent vessels located in the coelomic cavity are surrounded by the coelomic myoepithelium, and a peripheral blood plexus is present below the epidermis. The gill epidermis is everywhere thin and does not exhibit the characters of a transporting epithelium. The gill coelomic myoepithelium has several functions: (i) periodic contractions of the gill, propelling blood and coelomic fluid toward the central vascular and coelomic compartments; (ii) blood ultrafilration toward the coelomic cavity; (iii) probably transport, suggested by the specialized structures of the lateral membranes of the cells.  相似文献   

9.
Three-dimensional architecture of the branchial artery and venous vasculature of Homarus americanus was studied by the method of corrosion cast or styrene cracking and by scanning electron microscopy. Four arteries, the epibranchial (EA) and hypobranchial arteries (HA) on the septal wall of the afferent and efferent vessels, respectively, and two lateral canal arteries (LCA), each in one of the paired lateral canals, run parallel to the gill axis. The EA directs dendroid branches to the spongy tissue in the afferent vessel wall far from the efferent, supplying oxygen to the otherwise oxygen-depleted tissue. The HA distributes the filament arteriole (FA) into the central channel of individual middle filaments via the LCA. The FA opens halfway at a position where the channel narrows. Thus, it is likely that venous hemolymph in the central channel flows from base to tip in the direction in which arterial hemolymph from the FA flows. This and the anatomy of venous vasculature suggest three probable patterns of perfusion from afferent to efferent vessels: double serial circulation via the outer and inner filaments and novel routes both through the middle filament, i.e., single circulation via the afferent and efferent channels of this filament and double serial circulation via the outer filament and then the central channel of the middle. On the basis of the physics of flow and known physiological data, we propose that switching of these routes that involves independently functional multiple double serial circulations can play an important role in controlling efficiency of gas exchange, particularly during hypoxia. J Morphol. 233:165–181, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
This paper reports observations on the innervation of gill filaments of the lamprey, Lampetra japonica. Nerve fibers run on each side of the afferent filament artery (AFA nerve) and in the connective tissue compartment along the efferent filament artery (EFA nerve). The AFA nerve supplies vasomotor fibers to the afferent filament artery and arteriovenous anastomoses and special visceral motor fibers to branchial muscle fibers (musculus compressor branchialis circularis). Nerve endings of the vasomotor fibers contain large, cored vesicles (60–180 nm in diameter) with a variable number of small, clear vesicles (30–70 μm in diameter), whereas those of the visceral motor fibers have many small, clear vesicles with few large, cored vesicles. The EFA nerve supplies vasomotor fibers to the efferent filament artery. Their endings, containing mixtures of predominantly large, cored vesicles and small, clear vesicles make close synaptic contacts with reticular cells. The latter in turn are connected with each other or with smooth muscle cells in the wall of the efferent filament artery by nexuses. No nerves are found in the axial plate between the afferent and efferent filament arteries nor in the secondary lamellae of individual gill filaments. No afferent nerve supply to the gill filament has been found.  相似文献   

11.
A cell type structurally resembling the podocyte of the renal glomerulus is situated in the gill of the crustacean Panulirus argus. These cells adjoin the medial septum of the gill filament and invariably face the efferent haemolymph channel. The basal cell surface is produced into a series of regular ridges, between which are inserted elongated cell processes, together constituting a palisade that includes narrow slits (250 A or more in width) resembling the filtration pores between the foot process of the glomerular epithelium. In each instance, the slit is traversed by a diaphragm which in the crustacean 'podocyte' is ca. 30 A in width and contiguous with the outer leaflet of the unit membrane limiting the cell. Numerous coated vesicles originate from the cell surface beneath the diaphragms. The possible role of these cells in detoxification by withdrawal of materials from the circulation is discussed.  相似文献   

12.
Summary A light and electron microscopic study was made of the structure of the gill arch, filament and secondary lamella of Salmo gairdneri R. Blood pathways through the gill were traced from serial histological sections, and from the examination of ink perfused tissue and perspex casts formed following resin injection of the circulatory system.The epithelium covering the gill consists of unspecialized, dark, chloride and mucous cells. The distribution of specialized cells appears to be related to gill function. The basement membrane underlying the epithelium consists of three layers, the inner collagen layer being continuous with the connective tissue core of the gills.Blood supply to the secondary lamellar respiratory surface is via branchial, filament and secondary lamellar arteries. Blood spaces of the secondary lamellae are delimited by pillar cells containing what appears to be contractile material. The marginal channel of each lamella is bounded distally by cells of endothelial origin. A network of lymph spaces within the filaments connects with efferent branchial arteries. Nutritionary capillaries within the filaments connect with afferent branchial arteries. No shunts between afferent and efferent filament arteries were found.Data from this study and previous physiological and histopathological studies suggest a mechanism for the control of blood flow to suit the respiratory requirements of the fish. This mechanism involves a system of recruitment of additional respiratory units and changes in overall blood flow patterns.This work formed part of a thesis submitted for the degree of Doctor of Philosophy in 1971 and for which M. M. was in receipt of a studentship from the Natural Environmental Research Council. The authors are grateful for the support given by research grants from the M.R.C (P.T.) and the N.E.R.C. (M.M.), and to Prof. G. M. Hughes in whose department the work was carried out.  相似文献   

13.
Odontesthes argentinensis was collected from Mar Chiquita Coastal Lagoon, the Southernmost coastal Atlantic Lagoon of Argentina. The morphology of the gills was analyzed by scanning electron microscopy. The morphology of the superficial structures of the gill filaments and pharyngeal region of the gill arch was discussed and related to their functional aspects. The gills arches are structurally similar to those of other teleosts and bring out the osmoregulatory capacity of this species. The epithelium that covers the surface of the filaments and the pharyngeal region of the gill arch is formed by polygonal pavement cells with conspicuous microridges. These folds in the membrane are not denoted in the epithelium of the respiratory lamellae. Apical crypts of chloride cells are present on the afferent and interlamellar filament surfaces, but are absent elsewhere on the gill arch. The highest density of mucous cells is observed into the gill filament and the pharyngeal region which indicates the existence of a protective strategy of the respiratory lamellae and the pharynx. The epithelium of the gill arches and the rakers is studded with spines. There are taste buds along the whole pharyngeal region that may be associated with their participation in tasting at this zone.  相似文献   

14.
The adrenergic innervation of structures in the gills of brown and rainbow trout was studied with catecholamine fluorescence histochemistry. In the arterio-arterial vascular pathway, there was an innervation of the afferent and efferent lamellar arterioles, but the afferent and efferent filamental arteries and the secondary lamellae were devoid of any fluorescent nerve fibres. In S. trutta only, there was an additional innervation of the afferent and efferent branchial arteries and the base of the efferent filamental artery. The innervation of the arterio-venous vascular pathway was similar in both trout species. Many fluorescent nerve fibres were found on nutritive arterioles in the gill arch and interbranchial septum, and in the core of each filament between the surface epithelium and the wall of the filament venous sinus. No fluorescent nerve fibres were observed at the origins of the capillaries arising from the efferent filamental artery. The sympathetic nerve supply is provided to the gills mainly through the posttrematic nerve, with an occasional small contribution through the pretrematic nerve. The presence of adrenergic nerves in the gills is discussed in relation to the regulation of blood flow through the arterio-arterial and arterio-venous pathways.  相似文献   

15.
Haemodynamic effects of adenosine on gills of the trout (Salmo gairdneri)   总被引:1,自引:0,他引:1  
Summary The haemodynamic effects of adenosine on gills of the trout (Salmo gairdneri) were studied with in vitro and in vivo preparations.On the isolated head preparation, adenosine induced a decrease of the ventral aortic inflow and of the dorsal aortic outflow. Simultaneously the venous outflow increased. These effects were antagonized by theophylline. Adenosine induced a vasoconstriction in gill arches without filaments perfused by the afferent or the efferent branchial arteries. The efferent vessels were more sensitive to adenosine than afferent vessels. The whole systemic circulation of the isolated trunk did not show any response to adenosine. When adenosine was infused into the ventral aorta of living trout, the gill resistance to blood flow was greatly increased.These results suggest that adenosine is able to control the arterious and venous blood pathways in the trout gills by modulating their vascular resistance.  相似文献   

16.
应用光学显微镜、扫描电镜和透射电镜对波纹唇鱼(Cheilinus undulatus)鳃的组织结构、表面形态特征及鳃小片超微结构进行了观察.结果表明,波纹唇鱼有3对全鳃,1对半鳃和1对伪鳃,鳃丝呈梳状紧密排列在鳃弓上,鳃小片紧密地镶嵌排列在鳃丝两侧,入鳃动脉、出鳃动脉和鳃小片毛细血管网组成鳃的血液系统.鳃丝非呼吸区分布...  相似文献   

17.
M A Smith 《Tissue & cell》1974,6(3):515-519
Complex structures have been found in gill epithelium of the spiny lobster, Panulirus interruptus. These fibrillar structures are located at the base of gill filaments and at the ends of longitudinal septa which divide the gill filaments into channels for directional blood flow. The complex fibrillar aggregates compare favorably with secretory granules seen in crustacean integument and are believed to play a role in chitin metabolism.  相似文献   

18.
An ultrastructural study was performed on gill epithelia of the crayfish Astacus leptodactylus . The filament and the lamina of the podobranch were examined. In both structures a vascular system is lined by a specialized epithelium covered by a cuticle. Different types of epithelium were described in the gill filaments: either a thin epithelium with few organelles and probably involved in gas exchange or, in other filaments, a thick epithelium with characteristics of a transporting epithelium (abundant mitochondria in close association with plasma membrane infoldings). The epithelium of the lamina is also of a transporting type but in this case the complex of membrane infoldings and mitochondria is in an opposite orientation to that of the filament epithelium suggesting a different role in osmoregulation. © 1997 Published by Elsevier Science Ltd on behalf of The Royal Swedish Academy of Sciences.  相似文献   

19.
Morphological and histological studies on posterior gills of the mangrove crab Ucides cordatus showed that the 5th gill (of 7) has a larger surface area and a greater number of lamellae compared to the 6th gill. Regular separation of gill lamellae, important when the gill is in air, is maintained by enlargements of the marginal canals. Conical, spine-like structures along the efferent vessel of both 5th and 6th gills were also observed. In addition, pillar cells, a discontinuous lamellar septum and a hypobranchial artery were observed. The presence of valve-like structures near the efferent vessel was also indicated. These structures, together with the pillar cells, may have a role in directing the hemolymph flow towards certain gills during particular physiological states. Localization of osmoregulatory epithelia in the lamellae of both gills was inferred from dimethylaminostyrylethylpyridiniumiodine staining. Apparently gills 5 and 6 have osmoregulatory epithelial cell patches of similar area, corresponding to 43% and 38% of the total lamellae area, respectively. However, their localization is quite different. Gill number 5 osmoregulatory patches seem to be restricted to the afferent region of the lamella whereas in gill number 6, they are more dispersed over the entire lamella. These differences may be related to the particular functional characteristics of these gills.  相似文献   

20.
The morphology of the gills, with their blood supply have been described in Notopterus notopterus and Colisa fasciatus in some detail. Gills are curved and perforated on the dorsolateral and ventrolateral wall of the pharynx. The gills consist of 2 rows of filaments which are stacked one above the other to form a space. The gill filaments are smaller on both the ends and larger in middle. The gill filaments are of pink colour as they are supplied with blood. Gill rakers are large in size in Notopterus notopterus while they are small in Colisa fasciatus. 3 pairs of basibranchials are present in Notopterus notopterus which are covered by median membranous bony plate while 2 basibranchials are present in Colisa fasciatus. 3 pairs of hypobranchials are present in both fishes. 5 pairs of ceratobranchials are present in which Vth ceratobranchial bears teeth. 4 pairs of epibranchials are present. 3 pairs of pharyngobranchials are present in which the tip of the IVth pharyngobranchial bears minute teeth in Notopterus notopterus while in Colisa fasciatus IInd and IIIrd pharyngobranchial bear minute ones. One afferent branchial vessel is present in Notopterus notopterus and Colisa fasciatus in each gill like in other teleostean fishes. One efferent branchial vessel is present in each gill of Notopterus notopterus while in Colisa fasciatus 2 efferent are represented in each gill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号