首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Thiamethoxam and fipronil were examined for their termiticidal properties against the Formosan subterranean termite, Coptotermes formosanus Shiraki, and the eastern subterranean termite, Reticulitermes flavipes (Kollar). Concentrations > or =8 ppm thiamethoxam and > or =1 ppm fipronil provided an effective barrier against C. formosanus and R. flavipes. Sand was penetrated to some degree at all concentrations of thiamethoxam (0-800 ppm for C. formosanus and 0-1000 ppm for R. flavipes) and fipronil (0-64 ppm for both C. formosanus and R. flavipes) tested, indicating that both termiticides are nonrepellent. Thiamethoxam was found to be more toxic against C. formosanus than R. flavipes whereas fipronil showed similar toxicity for both species. Higher mortality prevented termites from penetrating the entire 5-cm segment of treated sand.  相似文献   

2.
Lactic acid bacteria have been identified as typical and numerically significant members of the gut microbiota of Reticulitermes flavipes and other wood-feeding lower termites. We found that also in the guts of the higher termites Nasutitermes arborum (wood-feeding), Thoracotermes macrothorax, and Anoplotermes pacificus (both soil-feeding), lactic acid bacteria represent the largest group of culturable carbohydrate-utilizing bacteria (3.6-5.2x10(4) bacteria per gut; 43%-54% of all colonies). All isolates were coccoid and phenotypically difficult to distinguish, but their enterobacterial repetitive intergenic consensus sequence (ERIC) fingerprint patterns showed a significant genetic diversity. Six different genotypes each were identified among the isolates from R. flavipes and T. macrothorax, and representative strains were selected for further characterization. By 16S rRNA gene sequence analysis, strain RfL6 from R. flavipes was classified as a close relative of Enterococcus faecalis, whereas strain RfLs4 from R. flavipes and strain TmLO5 from T. macrothorax were closely related to Lactococcus lactis. All strains consumed oxygen during growth on glucose and cellobiose; oxygen consumption of these and other isolates from both termite species was due to NADH and pyruvate oxidase activities, but did not result in H2O2 formation. In order to assess the significance of the isolates in the hindgut, denaturing gradient gel electrophoresis was used to compare the fingerprints of 16S rRNA genes in the bacterial community of R. flavipes with those of representative isolates. The major DNA band from the hindgut bacterial community was further separated by bisbenzimide-polyethylene glycol electrophoresis, and the two resulting bands were sequenced. Whereas one sequence belonged to a spirochete, the second sequence was closely related to the sequences of the Lactococcus strains RfLs4 and TmLO5. Apparently, those isolates represent strains of a new Lactococcus species which forms a significant fraction of the complex hindgut community of the lower termite R. flavipes and possibly also of other termites.  相似文献   

3.
The symbiotic digestion of lignocellulose in the hindgut of the wood-feeding termite Reticulitermes flavipes is characterized by two major metabolic pathways: (i) the oxidation of polysaccharides to acetate by anaerobic hydrogen-producing protozoa; and (ii) the reduction of CO2 by hydrogenotrophic acetogenic bacteria. Both reactions together would render the hindgut largely homoacetogenic. However, the results of this study show that the situation is more complex. By microinjection of radiolabelled metabolites into intact agarose-embedded hindguts, we showed that the in situ rates of reductive acetogenesis (3.3 nmol termite(-1) h(-1)) represent only 10% of the total carbon flux in the living termite, whereas 30% of the carbon flux proceeds via lactate. The rapid turnover of the lactate pool (7.2 nmol termite(-1) h(-1)) consolidates the previously reported presence of lactic acid bacteria in the R. flavipes hindgut and the low lactate concentrations in the hindgut fluid. However, the immediate precursor of lactate remains unknown; the low turnover rates of injected glucose (< 0.5 nmol termite(-1) h(-1)) indicate that free glucose is not an important intermediate under in situ conditions. The influence of the incubation atmosphere on the turnover rate and the product pattern of glucose and lactate confirmed that the influx of oxygen via the gut epithelium and its reduction in the hindgut periphery have a significant impact on carbon and electron flow within the hindgut microbial community. The in situ rates of reductive acetogenesis were not significantly affected by the presence of oxygen or exogenous H2, which is in agreement with a localization of homoacetogens in the anoxic gut lumen rather than in the oxic periphery. This adds strong support to the hypothesis that the co-existence of methanogens and homoacetogens in this termite is based on the spatial arrangement of the different populations of the gut microbiota. A refined model of metabolic fluxes in the hindgut of R. flavipes is presented.  相似文献   

4.
Clark-type oxygen microelectrodes and glass pH microelectrodes, each with a tip diameter of <=10 (mu)m, were used to obtain high-resolution profiles of oxygen concentrations and pH values in isolated termite guts. Radial oxygen profiles showed that oxygen penetrated into the peripheral hindgut contents up to about 150 to 200 (mu)m below the epithelial surface in both the lower termite Reticulitermes flavipes (Kollar) and the higher termite Nasutitermes lujae (Wasmann). Only the central portions (comprising less than 40% of the total volume) of the microbe-packed, enlarged hindgut compartments ("paunches") were completely anoxic, indicating that some members of the hindgut microbiota constitute a significant oxygen sink. From the slopes of the oxygen gradients, we estimated that the entire paunches (gut tissue plus resident microbiota) of R. flavipes and N. lujae accounted for 21 and 13%, respectively, of the respiratory activity of the intact animals. Axial oxygen profiles also confirmed that in general, only the paunches were anoxic in their centers, whereas midguts and posterior hindgut regions contained significant amounts of oxygen (up to about 50 and 30% air saturation, respectively). A remarkable exception to this was the posterior portion of an anterior segment (the P1 segment) of the hindgut of N. lujae, which was completely anoxic despite its small diameter ((apprx=)250 (mu)m). Axial pH profiles of the guts of Nasutitermes nigriceps (Haldeman) and Microcerotermes parvus (Haviland) revealed that there were extreme shifts as we moved posteriorly from the midgut proper (pH (apprx=)7) to the P1 segment of the hindgut (pH >10) and then to the P3 segment (paunch; pH (apprx=)7). The latter transition occurred at the short enteric valve (P2 segment) and within a distance of less than 500 (mu)m. In contrast, R. flavipes, which lacks a readily distinguishable P1 segment, did not possess a markedly alkaline region, and the pH around the midgut-hindgut junction was circumneutral. The oxic status of the peripheral hindgut lumen and its substantial oxygen consumption, together with previous reports of large numbers of aerobic and facultatively anaerobic bacteria in the hindgut microflora, challenge the notion that termite hindguts are a purely anoxic environment and, together with the steep axial pH gradients in higher termites, refine our concept of this tiny microbial habitat.  相似文献   

5.
Subterranean termites are major global pests of wood structures and wood products. Among the most economically important subterranean termite species in the US are Heterotermes aureus, Reticulitermes flavipes, and Coptotermes formosanus. In prior studies, the entomopathogenic nematode, Steinernema riobrave strain 355, exhibited a high level of virulence to H. aureus compared with other nematode species. However, S. riobrave 355 was reported to be poorly or only moderately virulent to R. flavipes and C. formosanus, respectively. We hypothesized that other strains of S. riobrave may possess a high level of virulence to all three termite species. Under laboratory conditions we compared three novel strains of S. riobrave (3-8b, 7-12, and TP) with the 355 strain for virulence to H. aureus, R. flavipes, and C. formosanus workers. H. aureus was very susceptible to all the S. riobrave strains, and termites in all nematode treatments were dead after 4 d. The TP strain of S. riobrave caused greater mortality in R. flavipes and C. formosanus compared to the other nematode strains. Specifically, the TP strain caused 75% and 91% mortality in R. flavipes and C. formosanus, respectively, which was more than 300% and 70% higher than the mortality caused by other strains. Additional studies are warranted to determine the ability of S. riobrave (TP) to control the targeted termite species under field conditions.  相似文献   

6.
Three foam board types, one untreated control, one containing 2,000 ppm disodium octaborate tetrahydrate (DOT), and one containing 1,000 ppm deltamethrin, were exposed to field populations of the eastern subterranean termite, Reticulitermes flavipes (Kollar), and the Formosan subterranean termite, Coptotermes formosanus Shiraki. There was no significant difference in termite damage between foam boards treated with 2,000 ppm DOT and the untreated control. Form boards containing 1,000 ppm deltamethrin were not damaged by R. flavipes, whereas only minor damage occurred after exposure to C. formosanus.  相似文献   

7.
A. Ebert  A. Brune 《Applied microbiology》1997,63(10):4039-4046
Molecular hydrogen is a key intermediate in lignocellulose degradation by the microbial community of termite hindguts. With polarographic, Clark-type H(inf2) microelectrodes, we determined H(inf2) concentrations at microscale resolution in the gut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Axial H(inf2) concentration profiles obtained from isolated intestinal tracts embedded in agarose Ringer solution clearly identified the voluminous hindgut paunch as the site of H(inf2) production. The latter was strictly coupled with both a low redox potential (E(infh) = -200 mV) and the absence of oxygen, in agreement with the growth requirements of the cellulolytic, H(inf2)-producing flagellates located in the hindgut paunch. Luminal H(inf2) partial pressures were much higher than expected (ca. 5 kPa) and increased more than threefold when the guts were incubated under a N(inf2) headspace. Radial H(inf2) concentration gradients showed a steep decrease from the gut center towards the periphery, indicating the presence of H(inf2)-consuming activities both within the lumen and at the gut epithelium. Measurements under controlled gas headspace showed that the gut wall was also a sink for externally supplied H(inf2), both under oxic and anoxic conditions. With O(inf2) microelectrodes, we confirmed that the H(inf2) sink below the gut epithelium is located within the microoxic gut periphery, but the H(inf2)-consuming activity itself, at least a substantial part of it, was clearly due to an anaerobic process. These results are in accordance with the recently reported presence of methanogens attached in large numbers to the luminal side of the hindgut epithelium of R. flavipes. If the oxygen partial pressure was increased, O(inf2) penetrated deeper and H(inf2) production was suppressed; it ceased completely as soon as the gut was fully oxic. In experiments with living termites, externally supplied H(inf2) (20 kPa) stimulated methane formation five- to sixfold to 0.93 (mu)mol (g of termite)(sup-1) h(sup-1), indicating that the methanogenic activity in R. flavipes hindguts is not saturated for hydrogen under in situ conditions. This rate was in good agreement with the H(inf2) uptake rates exhibited by isolated hindguts, which would account for more than half of the CH(inf4) formed by living termites under comparable conditions.  相似文献   

8.
9.
Time trends in mortality for the Formosan subterranean termite, Coptotermes formosanus Shiraki, and eastern subterranean termite, Reticulitermes flavipes (Kollar), were determined for thiamethoxam and fipronil. Filter paper treated with 50 ppm thiamethoxam led to >80% mortality in 2-4 d for R. flavipes, whereas 5 ppm thiamethoxam resulted in >80% mortality in 2-3 d for C. formosanus. Filter paper treated with 1 ppm fipronil resulted in >80% mortality in 5 d for R. flavipes and 9 d for C. formosanus, indicating that thiamethoxam is faster acting than fipronil. As concentration decreases for slow-acting termiticides, the time required for adverse effects to be fully expressed increases.  相似文献   

10.
The tunneling responses of two subterranean termite species, Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar), to the presence of sound wood in laboratory arenas were studied. Branching pattern and the speed of tunnel construction between R. flavipes and C. formosanus also were compared. Patlak's residence index (rho) was generated using the length, width, speed of construction, and area of the primary tunnels built by termites. In the same allotted time, C. formosanus built wider and shorter primary tunnels, whereas R. flavipes built thinner and longer primary tunnels. The presence of wood did not affect termite tunnel formation. This lack of variation in tunnel formation parameters was evidenced by the inability of the termites to locate wood sources over distance, even as short as 2.5 mm, and by the similar tunneling behaviors in areas of the arena with or without wood. Patlak's model predicted the densities of tunnels with an error between 9 and 28%. in experiments with R. flavipes exposed to a range of 0-8,000 g of wood, and between 61 and 87% in experiments with C. formosanus. These results indicated that the residence index can provide a qualitative measure of the effect of habitat heterogeneity on the individual termite tunnels. The tunneling constructions strategy of these subterranean termites is discussed.  相似文献   

11.
Using both topical application and substrate (sand) treatments the toxicities of seven new generation soil termiticides were evaluated to determine the LD50 and LC50 against two economically important subterranean termite species, eastern subterranean termite, Reticulitermes flavipes (Kollar), and Formosan subterranean termite, Coptotermes formosanus Shiraki. The lethal dose toxicity (LD50) rankings for R. flavipes from highest to lowest were: fipronil > bifenthrin > chlorantraniliprole > cyantraniliprole > imidacloprid > chlorfenapyr > indoxacarb; the rankings for C. formosanus were fipronil > imidacloprid > chlorantraniliprole > cyanthraniliprole> bifenthrin > chlorfenapyr > indoxacarb. The respective lethal concentration toxicity (LC50) rankings were fipronil > bifenthrin > chlorfenapyr > indoxacarb > cyantraniliprole > chlorantraniliprole > imidacloprid for R. flavipes; and fipronil > chlorfenapyr > bifenthrin >imidacloprid > cyantraniliprole > chlorantraniliprole > indoxacarb for C. formosanus. The study provides an opportunity to directly compare toxicity, action speed, and bioavailability among this group of newer generation soil termiticides.  相似文献   

12.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

13.
The behavioral responses to instant freezing or chilling temperatures and survivorship of the Formosan subterranean termite, Coptotermes formosanus Shiraki, and the Eastern subterranean termite, Reticulitermes flavipes (Kollar), were studied using a novel experimental design that closely simulated subterranean termites' natural in-ground environment. Both termite species responded to changes in temperature by exhibiting a downward mass movement from the cold to warmer area of constant temperature. However, the degrees of response were specific to the species and temperature regimen. Approximately 88 and 96% of R. flavipes escaped from instant 0 degrees C and chilling regimens (from 24 to 0 degrees C at a rate of 1 degrees C/h or 1 degrees C/12 h), respectively, compared with approximately 77 and 91% of C. formosanus. No significant difference was detected between the two cooling regimens in either termite species. Controls resulted in a relatively even distribution within test tubes in both termite species. The small portion of the termites that did not escape endured a cold coma at a 24-h 0 degrees C and had low mortality of 2.2 and <1% in R. flavipes and <5.2 and <3% in C. formosanus at instant and chilling regimens, respectively. This result may have implications for understanding group intelligence and decision making evolved by subterranean termites to survive temporary freezing cold.  相似文献   

14.
The bacterial community colonizing the gut wall of the termite Reticulitermes speratus was characterized without cultivation. Analysis of 16S rRNA genes after fractionation of the gut revealed that the bacterial composition on the gut wall was diverse and significantly different from that able to move unconfined in the gut fluid or physically associated with the gut protists. Actinobacteria, Firmicutes and Bacteroidetes were dominant on the gut wall, but Spirochaetes and the Termite group 1 phylum, abundant in the gut lumen, were relatively rare. A sequence-specific probe enabled the in situ detection of a rod-shaped Actinobacteria member, abundantly colonizing the gut paunch epithelium.  相似文献   

15.
Phylogenetic diversity of termite gut spirochaetes   总被引:2,自引:0,他引:2  
A molecular phylogenetic analysis was done of not-yet-cultured spirochaetes inhabiting the gut of the termite, Reticulitermes flavipes (Kollar). Ninety-eight clones of near-full-length spirochaetal 16S rDNA genes were classified by ARDRA pattern and by partial sequencing. All clones grouped within the genus Treponema , and at least 21 new species of Treponema were recognized within R. flavipes alone. Analysis of 190 additional clones from guts of Coptotermes formosanus Shiraki and Zootermopsis angusticollis (Hagen), as well as published data on clones from Cryptotermes domesticus (Haviland), Mastotermes darwiniensis Froggatt, Nasutitermes lujae (Wasmann) and Reticulitermes speratus (Kolbe), revealed a similar level of novel treponemal phylogenetic diversity in these representatives of five of the seven termite families. None of the clones was closely related (i.e. all bore ≤ 91% sequence similarity) to any previously recognized treponeme. The data also revealed the existence of two major phylogenetic groups of treponemes: one containing all of the currently known isolates of Treponema and a large number of phylotypes from the human gingival crevice, but only a minority of the termite gut spirochaete clones; another containing the majority of termite spirochaete clones and two Spirochaeta ( S. caldaria and S. stenostrepta ), which, although free living, group within the genus Treponema on the basis of 16S rRNA sequence. Signature nucleotides that almost perfectly distinguished the latter group, herein referred to as the 'termite cluster', occurred at the following ( E. coli numbering) positions: 289-G · C-311; A at 812; and an inserted nucleotide at 1273. The emerging picture is that the long-recognized and striking morphological diversity of termite gut spirochaetes is paralleled by their phylogenetic diversity and may reflect substantial physiological diversity as well.  相似文献   

16.
The fungus-growing termites Macrotermes cultivate the obligate ectosymbiontic fungi, Termitomyces. While their relationship has been extesively studied, little is known about the gut bacterial symbionts, which also presumably play a crucial role for the nutrition of the termite host. In this study, we investigated the bacterial gut microbiota in two colonies of Macrotermes gilvus, and compared the diversity and community structure of bacteria among nine termite morphotypes, differing in caste and/or age, using terminal restriction fragment length polymorphism (T-RFLP) and clonal analysis of 16S rRNA. The obtained molecular community profiles clustered by termite morphotype rather than by colony, and the clustering pattern was clearly more related to a difference in age than to caste. Thus, we suggest that the bacterial gut microbiota change in relation to the food of the termite, which comprises fallen leaves and the fungus nodules of Termitomyces in young workers, and leaves degraded by the fungi, in old workers. Despite these intracolony variations in bacterial gut microbiota, their T-RFLP profiles formed a distinct cluster against those of the fungus garden, adjacent soil and guts of sympatric wood-feeding termites, implying a consistency and uniqueness of gut microbiota in M. gilvus. Since many bacterial phylotypes from M. gilvus formed monophyletic clusters with those from distantly related termite species, we suggest that gut bacteria have co-evolved with the termite host and form a microbiota specific to a termite taxonomic and/or feeding group, and furthermore, to caste and age within a termite species.  相似文献   

17.
Prompted by our limited understanding of the degradation of lignin and lignin-derived aromatic metabolites in termites, we studied the metabolism of monoaromatic model compounds by termites and their gut microflora. Feeding trials performed with [ring-U-(sup14)C]benzoic acid and [ring-U-(sup14)C]cinnamic acid revealed the general ability of termites of the major feeding guilds (wood and soil feeders and fungus cultivators) to mineralize the aromatic nucleus. Up to 70% of the radioactive label was released as (sup14)CO(inf2); the remainder was more or less equally distributed among termite bodies, gut contents, and feces. Gut homogenates of the wood-feeding termites Nasutitermes lujae (Wasmann) and Reticulitermes flavipes (Kollar) mineralized ring-labeled benzoic or cinnamic acid only if oxygen was present. In the absence of oxygen, benzoate was not attacked, and cinnamate was only reduced to phenylpropionate. Similar results were obtained with other, nonlabeled lignin-related phenylpropanoids (ferulic, 3,4-dihydroxycinnamic, and 4-hydroxycinnamic acids), whose ring moieties underwent degradation only if oxygen was present. Under anoxic conditions, the substrates were merely modified (by side chain reduction and demethylation), and this modification occurred at the same time as a net accumulation of phenylpropanoids formed endogenously in the gut homogenate, a phenomenon not observed under oxic conditions. Enumeration by the most-probable-number technique revealed that each N. lujae gut contained about 10(sup5) bacteria that were capable of completely mineralizing aromatic substrates in the presence of oxygen (about 10(sup8) bacteria per ml). In the absence of oxygen, small numbers of ring-modifying microorganisms were found (<50 bacteria per gut), but none of these microorganisms were capable of ring cleavage. Similar results were obtained with gut homogenates of R. flavipes, except that a larger number of anaerobic ring-modifying microorganisms was present (>5 x 10(sup3) bacteria per gut). Neither inclusion of potential cosubstrates (H(inf2), pyruvate, lactate) nor inclusion of hydrogenotrophic partner organisms resulted in anoxic ring cleavage in most-probable-number tubes prepared with gut homogenates of either termite. The oxygen dependence of aromatic ring cleavage by the termite gut microbiota is consistent with the presence, and uptake by microbes, of O(inf2) in the peripheral region of otherwise anoxic gut lumina (as reported in the accompanying paper [A. Brune, D. Emerson, and J. A. Breznak, Appl. Environ. Microbiol. 61:2681-2687, 1995]). Taken together, our results indicate that microbial degradation of plant aromatic compounds can occur in termite guts and may contribute to the carbon and energy requirement of the host.  相似文献   

18.
Three Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), colonies located inside the 12.75-ha Louis Armstrong Park, New Orleans, were selected for elimination by using the chitin synthesis inhibitor hexaflumuron. Once eliminated, each vacated foraging territory was monitored for reinvasion by neighboring C. formosanus colonies, Reticulitermnes flavipes (Kollar) (Isoptera: Rhinotermitidae) colonies, or both. Each selected colony was eliminated in approximately 3 mo by using baits containing hexaflumuron. Overall activity of each untreated colony in the park remained unchanged during the same period. New C. formosanus and R. flavipes activity was detected in two of the three vacated territories, and in both areas, within days of selected colony elimination. The third vacated territory was completely reoccupied by a new C. formosanus colony approximately 7 mo later. Mark-recapture studies and DNA fingerprinting confirmed the distinctness of the reinvaders from eliminated and neighboring colonies.  相似文献   

19.
Differences in microenvironment and interactions of microorganisms within and across habitat boundaries should influence structure and diversity of the microbial communities within an ecosystem. We tested this hypothesis using the well characterized gut tract of the European subterranean termite Reticulitermes santonensis as a model. By cloning and sequencing analysis and molecular fingerprinting (terminal restriction fragment length polymorphism), we characterized the bacterial microbiota in the major intestinal habitats - the midgut, the wall of the hindgut paunch, the hindgut fluid and the intestinal protozoa. The bacterial community was very diverse (> 200 ribotypes) and comprised representatives of several phyla, including Firmicutes (mainly clostridia, streptococci and Mycoplasmatales-related clones), Bacteroidetes, Spirochaetes and a number of Proteobacteria, all of which were unevenly distributed among the four habitats. The largest group of clones fell into the so-called Termite group 1 (TG-1) phylum, which has no cultivated representatives. The majority of the TG-1 clones were associated with the protozoa and formed two phylogenetically distinct clusters, which consisted exclusively of clones previously retrieved from the gut of this and other Reticulitermes species. Also the other clones represented lineages of microorganisms that were exclusively recovered from the intestinal tract of termites. The termite specificity of these lineages was underscored by the finding that the closest relatives of the bacterial clones obtained from R. santonensis were usually derived also from the most closely related termites. Overall, differences in diversity between the different gut habitats and the uneven distribution of individual phylotypes support conclusively that niche heterogeneity is a strong determinant of the structure and spatial organization of the microbial community in the termite gut.  相似文献   

20.
Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 x 10 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH(3) was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by CO(2) evolution from [2-C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut x h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号