首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cloned the gene encoding RNase HII (RNase HIIPk) from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 by screening of a library for clones that suppressed the temperature-sensitive growth phenotype of an rnh mutant strain of Escherichia coli. This gene was expressed in an rnh mutant strain of E. coli, the recombinant enzyme was purified, and its biochemical properties were compared with those of E. coli RNases HI and HII. RNase HIIPk is composed of 228 amino acid residues (molecular weight, 25,799) and acts as a monomer. Its amino acid sequence showed little similarity to those of enzymes that are members of the RNase HI family of proteins but showed 40, 31, and 25% identities to those of Methanococcus jannaschii, Saccharomyces cerevisiae, and E. coli RNase HII proteins, respectively. The enzymatic activity was determined at 30°C and pH 8.0 by use of an M13 DNA-RNA hybrid as a substrate. Under these conditions, the most preferred metal ions were Co2+ for RNase HIIPk, Mn2+ for E. coli RNase HII, and Mg2+ for E. coli RNase HI. The specific activity of RNase HIIPk determined in the presence of the most preferred metal ion was 6.8-fold higher than that of E. coli RNase HII and 4.5-fold lower than that of E. coli RNase HI. Like E. coli RNase HI, RNase HIIPk and E. coli RNase HII cleave the RNA strand of an RNA-DNA hybrid endonucleolytically at the P-O3′ bond. In addition, these enzymes cleave oligomeric substrates in a similar manner. These results suggest that RNase HIIPk and E. coli RNases HI and HII are structurally and functionally related to one another.  相似文献   

2.
Bacterial ribonuclease III (RNase III) belongs to the RNase III enzyme family, which plays a pivotal role in controlling mRNA stability and RNA processing in both prokaryotes and eukaryotes. In the Vibrio vulnificus genome, one open reading frame encodes a protein homologous to E. coli RNase III, designated Vv-RNase III, which has 77.9 % amino acid identity to E. coli RNase III. Here, we report that Vv-RNase III has the same cleavage specificity as E. coli RNase III in vivo and in vitro. Expressing Vv-RNase III in E. coli cells deleted for the RNase III gene (rnc) restored normal rRNA processing and, consequently, growth rates of these cells comparable to wild-type cells. In vitro cleavage assays further showed that Vv-RNase III has the same cleavage activity and specificity as E. coli RNase III on RNase III-targeted sequences of corA and mltD mRNA. Our findings suggest that RNase III-like proteins have conserved cleavage specificity across bacterial species.  相似文献   

3.
Two new RNase inhibitors, SaI14 (Mr, ~14,000) and SaI20 (Mr, ~20,000), were isolated and purified from a Streptomyces aureofaciens strain. The gene sai14, coding for SaI14 protein, was cloned and expressed in Escherichia coli. The alignment of the deduced amino acid sequence of SaI14 with that of barstar, the RNase inhibitor from Bacillus amyloliquefaciens, showed significant similarity between them, especially in the region which contains most of the residues involved in barnase-barstar complex formation.  相似文献   

4.
Two genes, xynA and xynB, encoding xylanases from Paenibacillus sp. KCTC 8848P were cloned and expressed in Escherichia coli, and their nucleotide sequences were determined. The xylanases of E. coli transformants were released into the extracellular culture fluid in the absence of xylan. The structural gene of xynA 636 bp, encoded a protein of 212 amino acids, while the xynB gene consisted of 951 bp open reading frame for a protein of 317 amino acids. The amino acid sequence of the xynAgene showed 83% similarity to the xylanase of Aeromonas caviae, and belonged to the family 11 glycosyl hydrolases. The deduced amino acid sequence of the xynB gene, however, showed 51% similarity to the xylanase of Rhodothermus marinus, and belonged to the family 10 glycosyl hydrolases.  相似文献   

5.
The primary structure and base specificity of chicken liver RNase CL1 which has been reported by Miura et al. [Chem. Pharm. Bull., 32,4053–4060 (1984)] as poly U-preferential RNase, were extensively studied. The sequence study of this enzyme and comparison of the amino acid sequence of the enzyme with homologous RNases from oyster and Drosophila melanogaster suggested that RNase CL1 consists of three peptides with 17, 19, and 163 amino acid residues. The amino acid sequence of these three peptides were identified. The two small peptides are joined to the large peptide by disulfide bridges. The amino acid sequence of RNase CL1 had 62 (31.2%) and 63 residues (31.6%) identical with oyster RNase and D. melanogaster RNase, respectively, and belongs to the RNase T2 family RNase.

Reassessment of the base specificity of RNase CL1 found that it is guanylic acid, then uridylic acid-preferential, and not poly U preferential.  相似文献   

6.
A novel protein family, designated hereafter as RNase kappa (kappa) family, has been recently introduced with the characterization of the specific Cc RNase, isolated from the insect Ceratitis capitata. The human ortholog of this family consists of 98 amino acids and shares > 98% identity with its mammalian counterparts. This RNase is encoded by a single-copy gene found to be expressed in a wide spectrum of normal and cancer tissues. The cDNA of the human ribonuclease has been isolated and subcloned into a variety of prokaryotic expression vectors, but most efforts to express it caused a severe toxic effect. On the other hand, the expression of the human RNase by the use of the methylotrophic yeast Pichia pastoris system resulted in the production of a highly active recombinant enzyme. Using a 30-mer 5'-end-labeled RNA probe as substrate, the purified enzyme seems to preferentially cleave ApU and ApG phosphodiester bonds, while it hydrolyzes UpU bonds at a lower rate. Based on amino acid sequence alignment and substrate specificity data, as well as the complete resistance of the recombinant protein to the placental ribonuclease inhibitor, we concluded that the human RNase kappa is a novel endoribonuclease distinct from other known ribonucleases.  相似文献   

7.
A gene encoding a ribonuclease T2 (RNase T2) family enzyme, RNHe30, was cloned from Hericium erinaceum by PCR. The deduced amino acid sequence from the complimentary DNA (cDNA) (1074 bp) encodes a 302-aa protein (RNase He30) that has the consensus amino acid sequences of RNase T2 family enzymes including the putative signal peptide. The presence of five introns in the genomic DNA was confirmed by comparison of the cDNA and genomic DNA sequences. The promoter region contains a putative CAAT box and a consensus TATA box. Genes coding homologous enzymes were also identified in various other basidiomycetes. A phylogenetic tree of RNase T2s from these fungi was constructed from a multiple alignment of the deduced amino acid sequences. The tree showed that the enzymes were divided into two main groups.  相似文献   

8.
The Schizosaccharomyces pombe temperature-sensitive mutant snm1 maintains reduced steady-state quantities of the spliceosomal small nuclear RNAs (snRNAs) and the RNA subunit of the tRNA processing enzyme RNase P. We report here the isolation of the pac1 + gene as a multi-copy suppressor of snm1. The pac1 + gene was previously identified as a suppressor of the ran1 mutant and by its ability to cause sterility when overexpressed. The pac1 + gene encodes a double-strand-specific ribonuclease that is similar to RNase III, an RNA processing and turnover enzyme in Escherichia coli. To investigate the essential structural features of the Pac1 RNase, we altered the pac1 + gene by deletion and point mutation and tested the mutant constructs for their ability to complement the snm1 and ran1 mutants and to cause sterility. These experiments identified four essential amino acids in the Pac1 sequence: glycine 178, glutamic acid 251, and valines 346 and 347. These amino acids are conserved in all RNase III-like proteins. The glycine and glutamic acid residues were previously identified as essential for E. coli RNase III activity. The valines are conserved in an element found in a family of double-stranded RNA binding proteins. Our results support the hypothesis that the Pac1 RNase is an RNase III homolog and suggest a role for the Pac1 RNase in snRNA metabolism.  相似文献   

9.
The gene encoding serine alkaline protease (SapSh) of the psychrotrophic bacterium Shewanella strain Ac10 was cloned in Escherichia coli. The amino acid sequence deduced from the 2,442-bp nucleotide sequence revealed that the protein was 814 amino acids long and had an estimated molecular weight of 85,113. SapSh exhibited sequence similarities with members of the subtilisin family of proteases, and there was a high level of conservation in the regions around a putative catalytic triad consisting of Asp-30, His-65, and Ser-369. The amino acid sequence contained the following regions which were assigned on the basis of homology to previously described sequences: a signal peptide (26 residues), a propeptide (117 residues), and an extension up to the C terminus (about 250 residues). Another feature of SapSh is the fact that the space between His-65 and Ser-369 is approximately 150 residues longer than the corresponding spaces in other proteases belonging to the subtilisin family. SapSh was purified to homogeneity from the culture supernatant of E. coli recombinant cells by affinity chromatography with a bacitracin-Sepharose column. The recombinant SapSh (rSapSh) was found to have a molecular weight of about 44,000 and to be highly active in the alkaline region (optimum pH, around 9.0) when azocasein and synthetic peptides were used as substrates. rSapSh was characterized by its high levels of activity at low temperatures; it was five times more active than subtilisin Carlsberg at temperatures ranging from 5 to 15°C. The activation energy for hydrolysis of azocasein by rSapSh was much lower than the activation energy for hydrolysis of azocasein by the subtilisin. However, rSapSh was far less stable than the subtilisin.  相似文献   

10.
A gene encoding a new d-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although α-ketoisoleucine was the most favourable of all α-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity.  相似文献   

11.
Ribonuclease Ms from Aspergillus saitoi is a small acidic protein (11 714 Da) containing 106 amino acids of known sequence. Unlike other enzymes belonging to the RNase T1 family this ribonuclease is base-unspecific. Using interactive computer graphics and energy minimisation we predicted the structure of RNase Ms on the basis of sequence homology to RNase T1 of known structure. In this report the predicted structure of this protein is presented and characterised.  相似文献   

12.
The cultivation of Streptomyces griseus 2247 at the growth-limited temperature (37°C) or in liquid medium containing 5% ethanol (toxic for growth) revealed the presence of heat-induced proteins in the total cellular proteins. Among them, a 70 kDal protein was isolated and its N-terminal amino acid sequence was determined. The 70 kDal protein possessed a possible ATP-binding site in the N-terminus, which was conserved among the HSP70 family. A DNA fragment encoding the HSP70 homologue was isolated from a genomic library of S. griseus 2247 strain using an oligonucleotide probe based on the N-terminal amino acid sequence of the 70 kDal protein. DNA sequence analysis of the cloned gene revealed an open reading frame consisting of 618 amino acid residues. The deduced amino acid sequence is highly homologous to the HSP70 family proteins; it is 59.8 % identical to Clostridium perfringens HSP70, 59.7% to the Bacillus megaterium DnaK protein, 58.4% to the Methanosarcina mazei DnaK protein, 58.1% to Synechocystis HSP70, 52.8% to the DnaK protein of Escherichia coli, and about 50% to some of the mitochondrial heat shock proteins. The cloned gene could encode the HSP70 of S. griseus.  相似文献   

13.
A gene library of poly (vinyl alcohol) (PVA)-degrading Pseudomonas sp. strain VM15C was constructed in Escherichia coli with the vector pUC18. Screening of this library with a chromogenic PVA dehydrogenase assay resulted in the isolation of a clone that carries the gene (pdh) for the PVA dehydrogenase, and the entire nucleotide sequence of its structural gene was determined. The gene encodes a protein of 639 amino acid residues (68,045 Da) and in the deduced amino acid sequence, some putative functional sites, a signal sequence, a heme c-binding site, and a PQQ-binding site, were detected. The amino acid sequence showed low similarity to other types of quinoprotein dehydrogenases. PVA dehydrogenase expressed in E. coli clones required PQQ. Ca2+, and Mg2+ stimulated the activity. PVA-dependent heme c reduction occurred with exogenous PQQ in cell extracts of the E. coli clone. The PVA dehydrogenase in the E. coli clone was localized in the cytoplasm.  相似文献   

14.
The Neisseria polysaccharea gene encoding amylosucrase was subcloned and expressed in Escherichia coli. Sequencing revealed that the deduced amino acid sequence differs significantly from that previously published. Comparison of the sequence with that of enzymes of the α-amylase family predicted a (β/α)8-barrel domain. Six of the eight highly conserved regions in amylolytic enzymes are present in amylosucrase. Among them, four constitute the active site in α-amylases. These sites were also conserved in the sequence of glucosyltransferases and dextransucrases. Nevertheless, the evolutionary tree does not show strong homology between them. The amylosucrase was purified by affinity chromatography between fusion protein glutathione S-transferase–amylosucrase and glutathione-Sepharose 4B. The pure enzyme linearly elongated some branched chains of glycogen, to an average degree of polymerization of 75.  相似文献   

15.
The gene coding for the `heavy' subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis was isolated in an expression vector. Expression of the heavy subunit in Escherichia coli was detected with antibodies raised against crystalline reaction centres. The entire subunit, and not a fusion protein, was expressed in E. coli. The protein coding region of the gene was sequenced and the amino acid sequence derived. Part of the amino acid sequence was confirmed by chemical sequence analysis of the protein. The heavy subunit consists of 258 amino acids and its mol. wt. is 28 345. It possesses one membrane-spanning α-helical segment, as was revealed by the concomitant X-ray structure analysis.  相似文献   

16.
We report the cloning and sequencing of a gene cluster encoding a maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis that is homologous to the malEFG cluster encoding the Escherichia coli maltose transport system. The deduced amino acid sequence of the malE product, the trehalose/maltose-binding protein (TMBP), shows at its N terminus a signal sequence typical for bacterial secreted proteins containing a glyceride lipid modification at the N-terminal cysteine. The T. litoralis malE gene was expressed in E. coli under control of an inducible promoter with and without its natural signal sequence. In addition, in one construct the endogenous signal sequence was replaced by the E. coli MalE signal sequence. The secreted, soluble recombinant protein was analyzed for its binding activity towards trehalose and maltose. The protein bound both sugars at 85°C with a Kd of 0.16 μM. Antibodies raised against the recombinant soluble TMBP recognized the detergent-soluble TMBP isolated from T. litoralis membranes as well as the products from all other DNA constructs expressed in E. coli. Transmembrane segments 1 and 2 as well as the N-terminal portion of the large periplasmic loop of the E. coli MalF protein are missing in the T. litoralis MalF. MalG is homologous throughout the entire sequence, including the six transmembrane segments. The conserved EAA loop is present in both proteins. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the binding protein-dependent ABC transport systems in these two phylogenetic branches.  相似文献   

17.
18.
A dipeptidase was purified from a cell extract of Bifidobacterium longum BORI by ammonium sulfate precipitation and chromatography on DEAE-cellulose and Q-Sepharose columns. The purified dipeptidase had a molecular mass of about 49 kDa and was optimally active at pH 8.0 and 50°C. The enzyme was a strict dipeptidase, being capable of hydrolyzing a range of dipeptides but not tri- and tetrapeptides, p-nitroanilide derivatives of amino acids, or N- or C-terminus-blocked dipeptides. A search of the amino acid sequence of an internal tryptic fragment against protein sequences deduced from the total genome sequence of B. longum NCC2705 revealed that it was identical to an internal sequence of the dipeptidase gene (pepD), which comprised 1,602 nucleotides encoding 533 amino acids with a molecular mass of 60 kDa, and thereby differed considerably from the 49-kDa mass of the purified dipeptidase. To understand this discrepancy, pepD was cloned into an Escherichia coli expression vector (pBAD-TOPO derivative) to generate the recombinant plasmids pBAD-pepD and pBAD-pepD-His (note that His in the plasmid designation stands for a polyhistidine coding region). Both plasmids were successfully expressed in E. coli, and the recombinant protein PepD-His was purified using nickel-chelating affinity chromatography and reconfirmed by internal amino acid sequencing. The PepD sequence was highly homologous to those of the U34 family of peptidases, suggesting that the B. longum BORI dipeptidase is a type of cysteine-type N-terminal nucleophile hydrolase and has a β-hairpin motif similar to that of penicillin V acylase, which is activated by autoproteolytic processing.  相似文献   

19.
《Gene》1998,206(2):229-236
We have isolated the dipeptidyl aminopeptidase BI (DAP BI) gene from the plasmid library of Pseudomonas sp. WO24 chromosomal DNA by the enzymatic plate asaay using a chromogenic substrate. The DAP BI gene, designated dap b1, was further subcloned and sequenced. Sequence analysis of an approx. 3-kb fragment revealed an open reading frame of 2169 nucleotides, which was assigned to the dap b1 gene by N-terminal and internal amino acid sequences. The predicted amino acid sequence of DAP BI containing a serine protease Gly–X–Ser–X–Gly consensus motif displays extensive homologies to the several proteases belonging to the prolyl oligopeptidase family, a novel serine protease family possessing the catalytic triad with a specific array of Ser, Asp and His in this order, which is the hallmark of the member of this family including DAP IV. The dap b1 gene was expressed in Escherichia coli and the expressed enzyme was purified about 230-fold with 2.6% recovery from the cell-free extracts. The enzymatic properties such as molecular mass, substrate specificity and effect of inhibitor were similar to the native enzyme from Pseudomonas sp. WO24.  相似文献   

20.
Characterization of the genes involved in the process of protein translocation is important in understanding their structure-function relationships. However, little is known about the signals that govern chlamydial gene expression and translocation. We have cloned a 1.7 kb HindIII-PstI fragment containing the secY gene of Chlamydia trachomatis. The complete nucleotide sequence reveals three open reading frames. The amino acid sequence shows highest homology with Escherichia coli proteins L15, SecY and S13, corresponding to the spc-α ribosomal protein operons. The product of the C. trachomatis secY gene is composed of 457 amino acids with a calculated molecular mass of 50 195 Daltons. Its amino acid sequence shows 27.4% and 35.7% identity to E. coli and Bacillus subtilis SecY proteins, respectively. The distribution of hydrophobic amino acids in the C. trachomatis secY gene product is suggestive of it being an integral membrane protein with ten transmembrane segments, the second, third and seventh membrane segments sharing > 45% identity with E. coli SceY. Our results suggest that despite evolutionary differences, eubacteria share a similar protein export apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号