首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
PC12 cells express different Dp71 isoforms originated from alternative splicing; one of them, Dp71ab lacks exons 71 and 78. To gain insight into the function of Dp71 isoforms we identified dystrophin associated proteins (DAPs) that associate in vivo with Dp71ab during nerve growth factor (NGF) induced differentiation of PC12 cells. DAPs expression was analyzed by RT-PCR, Western blot and indirect immunofluorescence, showing the presence of each mRNA and protein corresponding to alpha-, beta-, gamma-, delta-, and epsilon-sarcoglycans as well as zeta-sarcoglycan mRNA. Western blot analysis also revealed the expression of beta-dystroglycan, alpha1-syntrophin, alpha1-, and beta-dystrobrevins. We have established that Dp71ab forms a complex with beta-dystroglycan, alpha1-syntrophin, beta-dystrobrevin, and alpha-, beta- and gamma-sarcoglycans in undifferentiated PC12 cells. In differentiated PC12 cells, the complex composition changes since Dp71ab associates only with beta-dystroglycan, alpha1-syntrophin, beta-dystrobrevin, and delta-sarcoglycan. Interestingly, neuronal nitric oxide synthase associates with the Dp71ab/DAPs complex during NGF treatment, raising the possibility that Dp71ab may be involved in signal transduction events during neuronal differentiation.  相似文献   

2.
Dystrophin and dystrophin-associated proteins (DAPs) form a complex around the sarcolemma, which gives stability to the sarcolemma and leads signal transduction. Recently, the nuclear presence of dystrophin Dp71 and DAPs has been revealed in different non-muscle cell types, opening the possibility that these proteins could also be present in the nucleus of muscle cells. In this study, we analyzed by Immunofluorescence assays and Immunoblotting analysis of cell fractions the subcellular localization of Dp71 and DAPs in the C(2)C(12) muscle cell line. We demonstrated the presence of Dp71, alpha-sarcoglycan, alpha-dystrobrevin, beta-dystroglycan and alpha-syntrophin not only in plasma membrane but also in the nucleus of muscle cells. In addition, we found by Immunoprecipitation assays that these proteins form a nuclear complex. Interestingly, myogenesis modulates the presence and/or relative abundance of DAPs in the plasma membrane and nucleus as well as the composition of the nuclear complex. Finally, we demonstrated the presence of Dp71, alpha-sarcoglycan, beta-dystroglycan, alpha-dystrobrevin and alpha-syntrophin in the C(2)C(12) nuclear envelope fraction. Interestingly, alpha-sarcoglycan and beta-dystroglycan proteins showed enrichment in the nuclear envelope, compared with the nuclear fraction, suggesting that they could function as inner nuclear membrane proteins underlying the secondary association of Dp71 and the remaining DAPs to the nuclear envelope. Nuclear envelope localization of Dp71 and DAPs might be involved in the nuclear envelope-associated functions, such as nuclear structure and modulation of nuclear processes.  相似文献   

3.
Histone deacetylase inhibitors (HDACIs) represent a new class of targeted anti-cancer agents and different other diseases, like muscular disorders. A number of studies have shown that extracellular signal-activated kinases can target chromatin-modifying complexes directly and regulate their function. The molecular connection between the dystrophin-associated protein complex (DAPC) and chromatin has been described, by showing that NO signaling regulates histone deacetylase (HDAC) activity and influences gene expression in different cell types. In present study, we investigated HDACs changes in HeLa cells undergoing growth inhibition and apoptosis, caused by HDACI BML-210 and retinoic acid (ATRA). Cell cycle analysis indicated that HeLa cell treatment with 20 and 30?μM concentration of BML-210 increased the proportion of cells in G0/G1 phase, and caused accumulation in subG1, indicating that the cells are undergoing apoptosis. We determined down-regulation of HDAC 1–5 and 7 after treatment with BML-210. Also, we demonstrated expression of different isoforms of alpha-dystrobrevin (α-DB) and other components of DAPC such as syntrophin, dystrophin, beta-dystrobrevin (β-DB) and NOS in HeLa cells after treatments. We determined changes in protein expression level of dystrophin, NOS1, α- and β-DB and in subcellular localization of α-DB after treatments with BML-210 and ATRA. In conclusion, these results suggest that HDACI BML-210 can inhibit cell growth and induce apoptosis in cervical cancer cells, what correlates with down-regulation of HDAC class I and II and changes in the DAPC expression levels. This can be important for identifying target proteins in DAPC signaling to HDACs, as a target of pharmacological intervention for treatment of muscular dystrophies and other diseases.  相似文献   

4.
In this study, the presence and cellular distribution of dystrophin family products (i.e. Dp71d, Dp71f-like protein and dystrobrevin) was examined by indirect immunofluorescence and Western blotting in guinea pig spermatozoa. Two dystrophin-associated proteins, beta-dystroglycan and alpha-syntrophin, and nNOS a protein frequently associated with alpha-syntrophin, were determined. In spermatozoa lacking plasma membrane and acrosome, Dp71f-like protein was found in the postacrosomal perinuclear theca and also in the middle piece of the flagellum. In the flagellum, Dp71f-like protein is localized together with alpha-syntrophin and nNOS. Dp71d was present in the plasma membrane of the middle piece with beta-dystroglycan, alpha-syntrophin and nNOS. Dp71d was also present in plasma membrane of the post acrosomal region, but only with nNOS. Finally, dystrobrevin was located all along skeletal flagellum structures and in the subacrosomal hemisphere of the perinuclear theca. This distinct and complementary distribution in various domains of spermatozoa may reveal a specific function for each short dystrophin family product, in the stabilization of the domains where they are located.  相似文献   

5.
beta-Dystrobrevin is a dystrophin-related and -associated protein that is highly expressed in brain, kidney, and liver. Recent studies with the kidneys of the mdx3Cv mouse, which lacks all dystrophin isoforms, suggest that beta-dystrobrevin, and not the dystrophin isoforms, may be the key component in the assembly of complexes similar to the muscle dystrophin-associated protein complexes (DPC) in nonmuscle tissues. To understand the role of beta-dystrobrevin in the function of nonmuscle tissues, we generated beta-dystrobrevin-deficient (dtnb(-/-)) mice by gene targeting. dtnb(-/-) mice are healthy, fertile, and normal in appearance. No beta-dystrobrevin was detected in these mice by Western blotting or immunocytochemistry. In addition, the levels of several beta-dystrobrevin-interacting proteins, namely Dp71 isoforms and the syntrophins, were greatly reduced from the basal membranes of kidney tubules and liver sinusoids and on Western blots of crude kidney and liver microsomes of beta-dystrobrevin-deficient mice. However, no abnormality was detected in the ultrastructure of membranes of kidney and liver cells or in the renal function of these mice. beta-Dystrobrevin may therefore be an anchor or scaffold for Dp71 and syntrophin isoforms, as well as other associating proteins at the basal membranes of kidney and liver, but is not necessary for the normal function of these mice.  相似文献   

6.
Dystrophin Dp71 is expressed in all tissues, with the exception of skeletal muscle, and is the main Duchenne muscular dystrophy (DMD) gene product in brain. As full-length dystrophin does in skeletal muscle, Dp71 associates with dystroglycans, sarcoglycans, dystrobrevins, syntrophins, and accessory proteins to form the dystrophin-associated protein complex (DAPC) in non-muscle tissues. Although it has been nearly 20 years since the discovery of Dp71, its study has become relevant only recently due to its direct involvement with the two main DMD non-muscular phenotypes: cognitive impairment and abnormal retinal physiology. In this review, we describe the historical background of Dp71 and the experimental models developed for its study. Additionally, we present and discuss the experimental evidence supporting the participation of Dp71 in different cellular processes, including cell adhesion, water homeostasis, cell division, and nuclear architecture. The functional diversity of Dp71 is attributed to the formation of Dp71-containing DAPC in numerous cell types and different subcellular compartments, including in plasma membrane and nucleus, as well as to the capability of Dp71-containing DAPC to work as the scaffold for proper clustering and anchoring of structural and signaling proteins to the plasma membrane and of nuclear envelope proteins to the inner nuclear membrane.  相似文献   

7.
The abundance and potential functional roles of intrinsically disordered regions in aquaporin-4, Kir4.1, a dystrophin isoforms Dp71, α-1 syntrophin, and α-dystrobrevin; i.e., proteins constituting the functional core of the astrocytic dystrophin-associated protein complex (DAPC), are analyzed by a wealth of computational tools. The correlation between protein intrinsic disorder, single nucleotide polymorphisms (SNPs) and protein function is also studied together with the peculiarities of structural and functional conservation of these proteins. Our study revealed that the DAPC members are typical hybrid proteins that contain both ordered and intrinsically disordered regions. Both ordered and disordered regions are important for the stabilization of this complex. Many disordered binding regions of these five proteins are highly conserved among vertebrates. Conserved eukaryotic linear motifs and molecular recognition features found in the disordered regions of five protein constituting DAPC likely enhance protein-protein interactions that are required for the cellular functions of this complex. Curiously, the disorder-based binding regions are rarely affected by SNPs suggesting that these regions are crucial for the biological functions of their corresponding proteins.  相似文献   

8.
To determine the role of Dp71 in neuronal cells, we generated PC12 cell lines in which Dp71 protein levels were controlled by stable transfection with either antisense or sense constructs. Cells expressing the antisense Dp71 RNA (antisense-Dp71 cells) contained reduced amounts of the two endogenous Dp71 isoforms. Antisense-Dp71 cells exhibited a marked suppression of neurite outgrowth upon the induction with NGF or dibutyryl cyclic AMP. Early responses to NGF-induced neuronal differentiation, such as the cessation of cell division and the activation of ERK1/2 proteins, were normal in the antisense-Dp71 cells. On contrary, the induction of MAP2, a late differentiation marker, was disturbed in these cells. Additionally, the deficiency of Dp71 correlated with an altered expression of the dystrophin-associated protein complex (DAPC) members alpha and beta dystrobrevins. Our results indicate that normal expression of Dp71 is essential for neurite outgrowth in PC12 cells and constitute the first direct evidence implicating Dp71 in a neuronal function.  相似文献   

9.
We have adopted the PC12 cell line as in vitro cell model for studying Dp71 function in neuronal cells. These cells express a cytoplasmic (Dp71f) and a nuclear (Dp71d) isoform of Dp71 as well as various dystrophin-associated proteins (DAPs). In this study, we revealed by confocal microscopy analysis and Western blotting evaluation of cell fractions the presence of different DAPs (β-dystroglycan, β-dystrobrevin, ε-sarcoglycan and γ1-syntrophin) in the nucleus of PC12 cells. Furthermore, we established by immunoprecipitation assays that Dp71d and the DAPs form a dystrophin-associated protein complex (DAPC) in the nucleus. Interestingly, depletion of Dp71 by antisense treatment (antisense-Dp71 cells) provoked a drastic reduction of nuclear DAPs, which indicates that Dp71d is critical for DAPs stability within the nucleus. Although Up71, the utrophin gene product homologous to Dp71, exhibited increased expression in the antisense-Dp71 cells, its scarce nuclear levels makes unlikely that could compensate for Dp71 nuclear deficiency.  相似文献   

10.
The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71’s complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.  相似文献   

11.
The dystrophin glycoprotein complex (DGC) is a membrane-associated protein complex binding extracellular matrix (ECM) molecules, such as laminin and forming a bridge towards the cytoskeleton. The molecular composition of the DGC is cell type dependent and it is involved in cell adhesion and motility. Here we present immunocytochemical localization of beta-dystroglycan, the central member of the DGC, utrophin and Dp71f, the spliced 71 kDa dystrophin protein product of the DMD gene, in cultured retinal Muller glial cells. It is shown that beta-dystroglycan and utrophin are colocalized in clusters in all parts of Muller cells including the lamellipodium and leading edge of migrating cells. As a contrast, Dp71f labels are distinct from beta-dystroglycan and confined to the perinuclear cytoplasm of Muller cells indicating that Dp71f is not a member of the DGC in cultured Muller cells.  相似文献   

12.
The subcellular distribution of Dp71 isoforms alternatively spliced for exon 71 and/or 78 was examined. The cDNA sequence of each variant was fused to the C-terminus of the green fluorescent protein and the constructs were transfected transiently in the cell lines HeLa, C2C12 and N1E-115. The subcellular distribution of the fused proteins was determined by confocal microscope analysis. The Dp71 isoform lacking the amino acids encoded by exons 71 and 78 was found exclusively in the cytoplasm whereas the variants containing the amino acids encoded by exon 71 and/or exon 78 show a predominant nuclear localization. The nuclear localization of Dp71 provides a new clue towards the establishment of its cellular function.  相似文献   

13.
The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in the center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.  相似文献   

14.
Utrophin is a component of the platelet membrane cytoskeleton and participates in cytoskeletal reorganization (Earnest, J. P., Santos, G. F., Zuerbig, S., and Fox, J. E. B. (1995) J. Biol. Chem. 270, 27259-27265). Although platelets do not contain dystrophin, the identification of smaller C-terminal isoforms of dystrophin, including Dp71, which are expressed in a wide range of nonmuscle tissues and cell lines, has not been investigated. In this report, we have identified Dp71 protein variants of 55-60 kDa (designated Dp71Delta(110)) in the membrane cytoskeleton of human platelets. Both Dp71Delta(110) and utrophin sediment from lysed platelets along with the high speed detergent-insoluble pellet, which contains components of the membrane cytoskeleton. Like the membrane cytoskeletal proteins vinculin and spectrin, Dp71Delta(110) and utrophin redistributed from the high speed detergent-insoluble pellet to the integrin-rich low speed pellet of thrombin-stimulated platelets. Immunoelectron microscopy provided further evidence that Dp71Delta(110) was localized to the submembranous cytoskeleton. In addition to Dp71Delta(110), platelets contained several components of the dystrophin-associated protein complex, including beta-dystroglycan and syntrophin. To better understand the potential function of Dp71Delta(110), collagen adhesion assays were performed on platelets isolated from wild-type or Dp71-deficient (mdx(3cv)) mice. Adhesion to collagen in response to thrombin was significantly decreased in platelets isolated from mdx(3cv) mice, compared with wild-type platelets. Collectively, our results provide evidence that Dp71Delta(110) is a component of the platelet membrane cytoskeleton, is involved in cytoskeletal reorganization and/or signaling, and plays a role in thrombin-mediated platelet adhesion.  相似文献   

15.
We have shown that the splicing isoform of Dp71 (Dp71d) localizes to the nucleus of PC12 cells, an established cell line derived from a rat pheochromocytoma; however, the mechanisms governing its nuclear localization are unknown. As protein phosphorylation modulates the nuclear import of proteins, and as Dp71d presents several potential sites for phosphorylation, we analyzed whether Dp71d is phosphorylated in PC12 cells and the role of phosphorylation on its nuclear localization. We demonstrated that Dp71d is phosphorylated under basal conditions at serine and threonine residues by endogenous protein kinases. Dp71d phosphorylation was activated by 2-O-tetradecanoyl phorbol 13-acetate (TPA), but this effect was blocked by EGTA. Supporting the role of intracellular calcium on Dp71d phosphorylation, we observed that the stimulation of calcium influx by cell depolarization increased Dp71d phosphorylation, and that the calcium-calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7) blocked such induction. The blocking action of bisindolylmaleimide I (Bis I), a specific inhibitor for Ca2+/diacylglicerol-dependent protein kinase (PKC), on Dp71d phosphorylation suggested the participation of PKC in this event. In addition, transfection experiments with Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression vectors as well as the use of KN-62, a CaMKII-specific inhibitor, demonstrated that CaMKII is also involved in Dp71d phosphorylation. Stimulation of Dp71d phosphorylation by cell depolarization and/or the overexpression of CaMKII favored the Dp71d nuclear accumulation. Overall, our results indicate that CAMKII-mediated Dp71d phosphorylation modulates its nuclear localization.  相似文献   

16.
The dystrophin-associated protein complex (DAPC), consisting of dystrophin, dystroglycans, sarcoglycans, dystrobrevins and syntrophins, provides a linkage between the cytoskeleton and the extracellular matrix. The disruption of DAPC leads to Duchenne/Becker muscular dystrophy and other neuromuscular diseases. Although adipose-derived stem cells had been used for the experimental treatment of Duchenne/Becker disease with promising results, little is known on the expression and function of DAPC in adipose tissue. Here we show that visceral and subcutaneous rat adipose depots express mRNAs for all known dystrophin isoforms, utrophin, α- and β-dystrobrevins, and α-, βI-, βII-, and γII-syntrophins. Visceral and subcutaneous rat preadipocytes express Dp116 and Dp71 mRNAs and proteins, and this expression is differentially regulated during adipogenesis. Rat preadipocytes also express β-dystrobrevin, α-, βI-, βII- and γII-syntrophins, β-dystroglycan and β-, δ-, and ε-sarcoglycans with no changes during adipogenesis. We also show that α-dystrobrevin increases their expression during adipose differentiation and extracellular matrix differentially regulates the expression of dystrophin isoforms mRNAs during adipogenesis. Our results show that DAPC components are expressed in adipose tissues and suggest that this complex has a role on the adipose biology.  相似文献   

17.
Dramatical development of molecular genetics has been disclosing the molecular mechanism of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). DMD gene product, dystrophin, is a submembranous cytoskeletal protein and many dystrophin-associated proteins (DAPs) have been identified, such as utrophin, dystroglycans, sarcoglycans, syntrophins and dystrobrevins. Dystrophin and DAPs are very important proteins not only for skeletal, cardiac, or smooth muscles but also for peripheral and central nervous systems including the retina. The retina has been extensively examined to demonstrate that dystrophin and beta-dystroglycan localize at the photoreceptor terminal, and their deficiency produces the abnormal neurotransmission between photoreceptor cells and ON-bipolar cells. Dystrophin has seven isoforms in variable tissues, and the retina contains full-length dystrophin (Dp427), Dp260, and Dp71. Recent studies have demonstrated that Dp71 localizes in the inner limiting membrane (INL) and around the blood vessel, and Dp260 is expressed in the outer plexiform layer (OPL). beta-dystroglycan is also expressed in the same regions as well as dystrophin, but it remains unclear whether other DAPs are expressed in the retina or not. It is generally assumed that dystrophin functions to stabilize muscle fibers with DAPs by linking the sarcolemma to the basement membrane, but its function in the retina is totally unknown so far.  相似文献   

18.
Dystrophin and the dystrophin-associated protein complex (DAPC) have recently been implicated in cell signalling events. These proteins are ideally placed to transduce signals from the extracellular matrix (ECM) to the cytoskeleton. Here we show that beta-dystroglycan is tyrosine-phosphorylated in C2/C4 mouse myotubes. Tyrosine phosphorylation was detected by mobility shifts on SDS-polyacrylamide gels (SDS-PAGE) and confirmed by immunoprecipitation and two-dimensional gel electrophoresis. The potential functional significance of this tyrosine phosphorylation was investigated using peptide 'SPOTs' assays. Phosphorylation of tyrosine in the 15 most C-terminal amino acids of beta-dystroglycan disrupts its interaction with dystrophin. The tyrosine residue in beta-dystroglycan's WW-binding motif PPPY appears to be the most crucial in disrupting the beta-dystroglycan-dystrophin interaction. beta-dystroglycan forms the essential link between dystrophin and the rest of the DAPC. This regulation by tyrosine phosphorylation may have implications in the pathogenesis and treatment of Duchenne's muscular dystrophy (DMD).  相似文献   

19.
20.
Oak SA  Russo K  Petrucci TC  Jarrett HW 《Biochemistry》2001,40(37):11270-11278
Syntrophins have been proposed to serve as adapter proteins. Syntrophins are found in the dystrophin glycoprotein complex (DGC); defects in the constituents of this complex are linked to various muscular dystrophies. Blot overlay experiments demonstrate that alpha-dystroglycan, beta-dystroglycan, and syntrophins all bind Grb2, the growth factor receptor bound adapter protein. Mouse alpha1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to also bind Grb2 in a Ca2+-independent manner. This binding was localized to the proline rich sequences adjacent to and overlapping with the N-terminal pleckstrin homology domain (PH1). Grb2 bound syntrophin with an apparent KD of 563 +/- 15 nM. Grb2-C-SH3 domain bound syntrophin with slightly higher affinity than Grb2-N-SH3 domain. Crk-L, an SH2/SH3 protein of similar domain structure but different specificity, does not bind these syntrophin sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号