首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formerly endangered Kirtland's warbler (Setophaga kirtlandii) is among a growing number of conservation-reliant species that depend on active management to avoid reverting to endangered status. Because the Kirtland's warbler is a habitat specialist of young, even-aged jack pine (Pinus banksiana), managers of the recovery effort stressed creating new jack pine stands and monitoring numbers of singing males through an annual census using single visits to individual stands. Kirtland's warbler will occupy and breed in red pine (P. resinosa), but red pine has not been surveyed for Kirtland's warblers in the annual population census. Furthermore, the current monitoring approach cannot determine their species detection probability or individual detection probability, which is essential to evaluate both red pine use and the accuracy of the census. From 2016–2018 we estimated density and detection probabilities in jack pine and red pine stands through repeated visits to a limited number of stands rather than single visits to many stands. Estimates of species detection probability indicated that ≥1 male Kirtland's warbler would be detected on most sites when any were present, but individual detection probabilities were less and varied by stand type, indicating that single visits to sites would underestimate numbers and that accurate estimation of detection probability was important for estimation of density in different stand types. We offer quantitative estimates of detection probabilities for determination of Kirtland's warbler population size in jack pine versus red pine stands in the same areas and breeding seasons. Managers of Kirtland's warblers should incorporate detection probabilities into population surveys to achieve more accurate estimates of population size.  相似文献   

2.
A primary goal of ecological restoration is often to return processes and functions to degraded ecosystems. Soil, while often ignored in restoration, supports diverse communities of organisms and is a fundamental actor in providing ecosystem processes and services. We investigated the impact of seeding and livestock grazing on plant communities, soil microorganisms, and soil fertility 3 years after the restoration of a disturbed pipeline corridor in southeastern Arizona. The initial soil disturbance and topsoil treatment, regardless of seeding or grazing, was the most influential factor in determining differences in both plant and microbial communities. Compared with the control, the disturbed and restored sites had greater plant species richness, greater total herbaceous plant cover, greater soil organic matter, higher pH, and differed in soil nutrients. Bacteria and fungi appeared to generally correlate with micro‐environment and soil physiochemical properties rather than specific plant species. The undisturbed control had a smaller proportion of bacterial functional groups associated with the breakdown of plant biomass (polysaccharide decomposition) and a smaller proportion of arbuscular mycorrhizal fungi (AMF) compared with disturbed and restored sites. The ability of the unseeded disturbed site to recover robust vegetation may be due in part to the high presence of AMF. These differences show selection for soil microorganisms that thrive in disturbed and restored sites and may contribute to increased plant productivity. Restoration of specific plant species or ecological processes and services would both benefit from better understanding of the impacts of disturbance on soil microorganisms and soil fertility.  相似文献   

3.
Jack pine barrens, once common in northern lower Michigan, mostly have been converted to managed jack pine plantations. Management of the disturbances associated with logging provides the opportunity to maintain the unique plant assemblages of jack pine barrens and nest habitat of the federally endangered Kirtland's warbler. Studies indicate that Carex pensylvanica can develop into dense mats and strongly compete with other barrens species such as Vaccinium angustifolium, which seem to be important species for Kirtland's warbler nest locations. According to forest managers, the most important factors facilitating high cover of V. angustifolium and reducing cover of C. pensylvanica are the amount of shade produced by tree crowns before harvest (pre‐harvest shade), the length of time between harvest and planting (planting delay), and fire. We found that high or low levels of pre‐harvest shade had no effect on cover of either V. angustifolium or C. pensylvanica. Planting delays of at least three years following prescribed burns generally increased cover of V. angustifolium in forest plots, which are important for warbler nesting. Analysis of community composition in openings indicated that burning enhanced the growth of barrens species. We found only weak evidence for a negative correlation between the cover of V. angustifolium and C. pensylvanica on our study sites. The openings created in the jack pine plantation are important refugia for barrens flora that would likely be lost under forests managed strictly for jack pine. Maintenance of jack pine barrens flora and Kirtland's warbler nest habitat is possible within the context of a heavily managed forest plantation system.  相似文献   

4.
Grazing by large herbivores, in interplay with environmental productivity, is a key driver of the composition of the vegetation with important consequences on the ecosystem and, consequently, for land management. We tested the predictions of the resource availability – resource–acquisition theory by assessing the extent to which community averages of plant traits, known to be related to plant growth, competitive ability and response to grazing were correlated with resource gradients within local (200 km2) geographical ranges. Second, we assessed the applicability of the same set of plant traits to make inferences on ecological effects of grazing by sheep in alpine ecosystems in Norway, using a data set consisting of 16 sites in central Norway. We estimated grazing intensity by free-ranging sheep based on GPS telemetry, soil properties, plant species composition and species traits i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf size and plant height. Soil fertility and the interaction between soil fertility and grazing, but not grazing intensity alone, were significantly related to plant species and traits composition. Generally, average SLA showed lower correspondence with soil fertility and grazing than the other traits. Leaf size and plant height were lowest at sites with high grazing intensity and in sites with low fertility, and increased with soil fertility in little and moderately grazed sites, but declined at high fertility sites when grazing was intense. LDMC showed the opposite trend. Grazing intensity was more related to the variability in plant composition and average plant traits when environmental productivity was high. Our results therefore are indicative of a convergence of responses to grazing and nutrient limitation.  相似文献   

5.
Six-week-old, mycorrhiza-free, bareroot jack pine and black spruce seedlings were outplanted in ten reforestation sites, situated between 45–48° latitude N and 69–74° longitude W, within the province of Quebec, representing diverse operational forestry disturbances and ecological conditions. Two months after outplanting, root systems of black spruce seedlings had fewer mycorrhizae than those of jack pine seedlings. Ectomycorrhizal colonization on black spruce seedlings did not vary significantly with the reforestation site. Percent mycorrhizal colonization for these seedlings was positively correlated with seedling dry weight while with the jack pine seedlings, mycorrhizal colonization varied significantly with the outplanting site and there was no correlation between mycorrhizal formation and seedling dry weight. Multiple linear regressions showed pH to be a determinant soil factor for mycorrhizal colonization for the two species. Drainage was the other influential factor affecting colonization of black spruce while organic matter accumulation was more important for jack pine. Inoculation with selected ectomycorrhizal fungi could be more important for black spruce than for jack pine seedlings.  相似文献   

6.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

7.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

8.
Legume species distribution and abundance and selected environmental variables were quantified across a complex gradient (varying in both water-holding capacity and fertility) for frequently burned longleaf pine (Pinus palustris)–wiregrass (Aristida stricta) ecosystems. Legumes were present in all months; however, abundance peaked in June and was minimal after killing frosts in October. Legume species were prominent in the flora (43 species encountered) ubiquitous (94% of 2-m2 subplots had at least one legume species), and abundant (nearly 120 000 stems/ha). Although most species were widely distributed throughout the gradient, Lespedeza angustifolia was distinctly associated with the more hydric end of the gradient, while both Petalostemon pinnatum and Galactia microphylla were located in the more xeric extreme. The percentage variation in species that could be accounted for by environmental variation was low (27%). Of the variation that could be accounted for, a number of environmental variables were important, including soil moisture, pine basal area (i.e., light), and bivalent base cations (e.g., Ca2+). Although gradients in resource availability among sites did not affect the distribution of species or abundance of legumes strongly, variation in resources are likely to regulate N2-fixation rates of the various native legume species, and thereby affect ecological functions such as maintenance of N capital and productivity.  相似文献   

9.
The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (>4000 mm) age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on the same gradients, with peak values at the 20,000–150,000 yr old sites, and that foliar concentrations were consistently lower under the wet than under the mesic conditions. Our objectives were to assay the influences of soil aging and moisture on forest development using the patterns and rates of species displacements. The canopies at all sites were dominated by Metrosideros polymorpha. Mean height and dbh of upper canopy Metrosideros trees increased from the youngest site to peak values at the 2100–9000 yr sites, and successively declined to older sites. A detrended correspondence analysis applied to mean species cover values revealed that significant variation among sites occurred only on one axis (axis 1), for both soil-age gradients. Sample scores along axis 1 were perfectly correlated with soil age on the mesic gradient, and significantly correlated on the wet gradient. Higher rainfall appeared to be responsible for the higher rates of species turnover on the wet gradient probably through faster rock weathering and greater leaching of soil elements. We concluded that the changes in species cover values and size of the canopy species was a reflection of the changing pattern of nutrient availability associated with soil aging.  相似文献   

10.
敦煌西湖荒漠-湿地生态系统优势物种生态位研究   总被引:4,自引:3,他引:1  
水文情势改变会引起土壤盐分变化,直接影响到荒漠-湿地生态系统植被的分布与演替。基于对57个样地、171个样方植物物种分布影响较大的土壤pH值和土壤电导率两个环境因子,将其划分为6个梯度等级,测度分析了敦煌西湖植被群落中15个主要优势种的生态位特征,了解不同物种利用资源和占据生态空间的能力,对维持和科学保育植物群落的多样性具有重要意义。结果表明:(1)在土壤pH值和电导率梯度两个资源维上,多枝柽柳和芦苇的重要值和生态位宽度均较大,说明这两个物种适应能力强能够较好地利用环境资源,分布范围大且均匀。它们作为敦煌西湖植被群落中的广域种,具有重要的生态地位和作用。其次生态位较宽的疏叶骆驼刺、胡杨和苏枸杞对环境因子也具有较强的适应能力。(2)两个土壤因子梯度下植物种群生态位宽度相似,但也存在差异。如泡泡刺、蒙古沙枣在土壤pH值梯度资源维上的生态位宽度值远大于在土壤电导率梯度资源维上,但尖叶盐爪爪和甘蒙柽柳在土壤电导率梯度资源维上生态位宽度较大,表现出较强的耐盐能力,从而说明这些物种对不同土壤因子的利用能力和适应性不完全相同。(3)在两个资源维上优势物种间的生态位重叠值小于0.5的种对均为61对,占总种对的58.10%,因此生态位重叠值整体保持在较低水平,说明物种在土壤pH值和土壤电导率两个环境梯度上生态位分化明显。(4)敦煌西湖优势物种间总体表现为不显著的负关联,表明物种之间处于竞争关系,但竞争强度不大且群落结构稳定性较弱。  相似文献   

11.
长白山北坡木本植物分布与环境关系的典范对应分析   总被引:16,自引:1,他引:15       下载免费PDF全文
 在长白山北坡海拔700~2 600 m的坡面上,海拔每上升100 m设立一个样点,共计20个样点。调查每个样点中木本植物的生态重要值,并计测样点内包括气候、土壤、林冠郁闭度在内的13个环境因子。应用CANOCO3.12软件对获得的数据进行了典范对应分析(CCA),应用CANODRAW3.0作出了种类  相似文献   

12.
The influence of thermal disturbance and site characteristics on distribution of herbs was studied in portions of a 3020 ha wetland in the southeastern USA. Presence-absence of 52 species in 130 0.25 m2 plots was determined from four sites with different disturbance histories and from an undisturbed site. Data from the four disturbed sites were ordinated by detrended correspondence analysis. Differences in species composition among sites (coarse scale) were associated with water depth, light, and substrate type. Within a site (at a fine scale), correlation of environmental variables with ordination scores at a chronically disturbed site was weakly correlated with light (r=0.50). At two sites with episodic disturbance, species composition correlated significantly and positively with substrate and water depth. At a recovering site, vegetation patterns were moderately correlated with water depth (r=?0.52). Species richness was correlated with substrate type along the disturbance gradient. Our results are consistent the intermediate disturbance hypothesis and the subsidy-stress gradient concept.  相似文献   

13.
水稻土中紫色光合细菌沿纬度梯度的空间分异特征   总被引:1,自引:0,他引:1  
紫色光合细菌由于其代谢途径的多样性,在环境中广泛分布,是生态系统中碳循环的参与者和推动者之一。但是,水稻土中紫色光合细菌群落结构的空间分异却鲜有报道。基于此,沿我国温度梯度带(纬度梯度:28.38°N—47.43°N),采集了8个典型水稻土,利用PCR-DGGE指纹图谱和系统发育树分析揭示不同地点水稻土中紫色光合细菌群落的组成;结合多个环境因子,利用生物信息学,典范对应分析(Canonical Correspondence Analysis,CCA)和最小判别效应分析(Cladogram,LDA)明确水稻土中紫色光合细菌的空间分异规律。研究发现我国8个典型水稻土中紫色光合细菌主要由变形菌门(Proteobacteria)的α和β这两个分支组成,主要为紫色非硫细菌;p H和纬度都是驱动水稻土中紫色光合细菌群落结构分异的关键因子。该认知不仅有助于更好地揭示稻田关键功能微生物群的生物地理学分布,还有助于进一步探究我国稻田生态系统有机质转化的时空差异。  相似文献   

14.
We investigated the spatial structures of soil properties and snow-bed vegetation, and their relationships, in southern Italy. We analyzed data on 26 plant species and 10 soil traits from adjacent 1 × 1 m plots in two snow-bed patches. Measures of spatial autocorrelation revealed striking spatial structures for plant cover and soil properties at both sites. Bivariate statistics and Mantel tests highlighted a significant correlation between spatial patterns of plants and soil in the study sites. Canonical correspondence analysis related such relationships to an ecological gradient connecting soil properties and plant assemblages in this unusual ecological context. Among the variables significantly related to plant patterns is the soil organic matter, which is recognized as being sensitive to global warming. Our analyses suggest that soil dynamics due to increasing temperature may promote the replacement of species typical of southern snow-bed ecosystems by more mesophilous plants.  相似文献   

15.
许还  殷秀琴  马辰 《生态学报》2017,37(23):8005-8014
为了解长白山地不同地貌类型典型农田生态系统土壤跳虫群落结构及其分布,探讨不同地貌类型对土壤跳虫群落结构和分布及其季节动态的影响,于2015年春季(5月)、夏季(7月)、秋季(9月)分别对长白山地玄武岩台地、花岗岩低山、花岗岩丘陵三种地貌类型玉米田土壤跳虫进行了研究。研究表明,3个生境共获土壤跳虫881头,隶属10科16属22种。其中,玄武岩台地土壤跳虫个体密度是1 760头/m~2,17种;花岗岩低山个体密度是2 206.67头/m~2,13种;花岗岩丘陵个体密度是1 906.67头/m~2,18种。地貌及取样时间的差异对土壤跳虫个体密度、物种数、多样性指数均有一定的影响。花岗岩低山与花岗岩丘陵的个体密度和物种数大小为秋季春季夏季,而玄武岩台地的个体密度和物种数表现出随季节变化呈递增的趋势(P0.05)。不同地貌土壤跳虫多样性均在秋季达到最大,夏季玄武岩台地多样性指数显著高于花岗岩低山和花岗岩丘陵,秋季,玄武岩台地丰富度指数和均匀度指数显著高于花岗岩低山,玄武岩台地优势度指数显著低于花岗岩低山(P0.05)。不同土壤环境因子对跳虫的影响不同,土壤温湿度、有机质、全氮、速效氮和全磷与土壤跳虫的群落结构、生态分布有明显的相关性。综上可知,长白山地农田生态系统土壤跳虫群落结构和生态分布因地貌类型不同而存在差异,季节变化也对其影响明显。  相似文献   

16.
Abstract. Compositional variation among 172 boreal forests stands, based upon the understorey terricolous bryophyte and macrolichen vegetation, is compared with that based upon vascular vegetation. Detrended correspondence analysis (DCA) of the two datasets yielded stand ordinations each indicating a single dominant upland-bottomland gradient. This was most clear among 138 stands in the cryptogam dataset. Canonical correspondence analysis (CCA) of the 138 stand subset yielded a pronounced first axis gradient from dry, nutrient poor pine dominated forest sites to moist, nutrient rich bottomland sites dominated by balsam poplar woodland. Individual species response curves, by the method of log-linear least squares regression, yielded three different respective patterns among the most abundant tree, understorey vascular and cryptogamic plant species. Whereas curves for the tree species were ‘Gaussian’ in shape and displaced at somewhat regular intervals along the gradient, the abundant understorey vascular plant species curves clustered in the mesic, mixed wood region two thirds of the way along. Curves for the abundant cryptogams were mostly linear in shape and absent from the mixed wood zone, showing concentrations at one end of the gradient or the other. Two interpretations of the understorey pattern are considered. One proposes competitive exclusion of cryptogams from the mesic mixed wood region by the vascular understorey plants. Another proposes that the cryptogams are adapted to the sharply contrasting ecosystems encountered at one end of the gradient or another but that none can effectively cope with the intermediate, mixed wood ecosystems. Evidence from the response curves favours this second interpretation.  相似文献   

17.
Rising temperature and altered precipitation regimes will lead to severe droughts and concomitant extreme events in the future. Forest ecosystems have shown to be especially prone to climate change. In assessing climate change impacts, many studies focus on high altitude or ecological edge populations where a climate signal is supposedly most pronounced. While these studies represent only a fraction of the forest ecosystems throughout Europe, findings on climate sensitivity of lowland core populations remain comparatively underrepresented.By using tree-ring widths of a large region-wide network of European beech and Scots pine populations along a precipitation gradient in northeastern Germany, we identify main climatic drivers and spatio-temporal patterns in climate sensitivity. Further, we analyze the resistance of tree growth towards drought. Detailed data on soil characteristics was used to interpret climate-growth relationships.Beech was found to be most sensitive to summer drought during early summer at dry sites, whereas pine displayed highest sensitivity for winter temperature at wet sites. The resistance to extreme drought was lower for beech. By splitting the observation period (1964–2017) into an early and late period, we found non-stationary climate-growth relationships for both study species with beech showing an increase in drought sensitivity and pine in winter temperature sensitivity.Overall, beech populations seem to be especially endangered by prospective climate changes, whereas climate-growth relationships of pine seem more ambiguous with a possible trade-off between enhanced photosynthetic activity caused by early photosynthesis in late winter and reduced activity due to summer drought.  相似文献   

18.
The influence of landscape patterns on ecological processes is generally acknowledged, but often difficult to quantify. The objective of our study was to quantify the relation of jack pine budworm ( Choristoneura pinus pinus ) population levels to both the abundance of jack pine ( Pinus banksiana ) and of jack pine stand edges in the landscape. The 450 000 ha Pine Barrens region, located in northwestern Wisconsin, USA, experienced a severe jack pine budworm outbreak from 1990 to 1995. We calculated landscape indices on a landcover map derived from Landsat TM satellite imagery. Landscape indices were calculated on circular buffers (0.5, 0.75, 1, 1.5, and 2.5 km radius) centered on 143 budworm population sampling points for which annual budworm counts were available. Edge density was normalized for the proportion of jack pine in the landscape using random maps as a standard. Correlations between landscape patterns and budworm populations varied over time: proportion of jack pine showed strongest positive correlation with budworm population levels up to the peak of the outbreak (1993). Edge density exhibited positive correlation up to the peak of the outbreak, but negative correlation in the subsequent years as the outbreak declined. This may suggest that pollen-bearing male cones, which are more abundant along edges, support higher budworm populations in the initial phase of the outbreak, but stronger predation on budworm along edges subsequently reduces populations. We provide insight into previously inconclusive results on the relation of jack pine budworm population density to jack pine stand edges. The effects of landscape patterns, such as edge density, may vary not only in magnitude, but also in direction, being positive and negative during different phases of an insect outbreak. Therefore, caution should be taken in relating landscape patterns to process at either a single scale or point in time.  相似文献   

19.
Understanding how patterns of leaf nutrient traits respond to groundwater depth is crucial for modeling the nutrient cycling of desert riparian ecosystems and forecasting the responses of ecosystems to global changes. In this study, we measured leaf nutrients along a transect across a groundwater depth gradient in the downstream Heihe River to explore the response of leaf nutrient traits to groundwater depth and soil properties. We found that leaf nutrient traits of dominant species showed different responses to groundwater depth gradient. Leaf C, leaf N, leaf P, and leaf K decreased significantly with groundwater depth, whereas patterns of leaf C/N and leaf N/P followed quadratic relationships with groundwater depth. Meanwhile, leaf C/P did not vary significantly along the groundwater depth gradient. Variations in leaf nutrient traits were associated with soil properties (e.g., soil bulk density, soil pH). Groundwater depth and soil pH jointly regulated the variation of leaf nutrient traits; however, groundwater depth explained the variation of leaf nutrient traits better than did soil pH. At the local scale in the typical desert riparian ecosystem, the dominant species was characterized by low leaf C, leaf N, and leaf P, but high leaf N/P and leaf C/P, indicating that desert riparian plants might be more limited by P than N in the growing season. Our observations will help to reveal specific adaptation patterns in relation to the groundwater depth gradient for dominant desert riparian species, provide insights into adaptive trends of leaf nutrient traits, and add information relevant to understanding the adaptive strategies of desert riparian forest vegetation to moisture gradients.  相似文献   

20.
Soil microbial functional diversity was assessed along a climatic gradient in Western Canada. Mineral soil samples were collected from jack pine (Pinus banksiana Lamb.) stands along an 800km transect between Prince Albert, Saskatchewan and Gillam, Manitoba. Microbial communities were isolated from the soil samples, washed and inoculated into wells of Gram-negative Biolog microplates. Optical density values were used to calculate Shannon diversity indices and to perform principal component analysis. Colour development rank plots (CDR) were created by expressing optical density values as a percentage of total colour development and plotting the wells in descending order. Soil microbial functional diversity decreased with increasing latitude and correlated positively with measures of atmospheric temperature and pH. Soil microbial diversity may be lower in northern sites due to decreased productivity, nutrient limitation and higher acidity. CDR plots are consistent with a trend of increasing environmental harshness moving north along the transect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号