首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ensifer sp. strain AS08 and Pseudomonas sp. strain AS90 degrading short ethoxy (EO) chain-nonylphenol (NP) [NPEOav2.0 containing NP mono- ∼ tetraethoxylates (NP1EO ∼ NP4EO); average 2.0 EO units] were isolated by enrichment cultures. Both strains grew on NP but not on octyl- and nonylphenol polyethoxylates (NPEOs) (average 10 EO units). Growth and degradation of NPEOav2.0 was increased with increased concentrations of yeast extract (0.02–0.5%) in a culture medium. Culture supernatants of both strains grown on NPEOav2.0 were analyzed by high-performance liquid chromatography, showing degradation of NP4EO–NP1EO. The metabolites from nonylphenol diethoxylate (NP2EO) by resting cells of both strains were identified by gas chromatography–mass spectrometry as nonylphenoxyethoxyacetic acid, NP1EO, nonylphenoxyacetic acid (NP1EC), and NP, while those from NP1EO were identified as NP1EC and NP. Cell-free extracts from strain AS08 grown on NPEOav2.0 dehydrogenated NPEOs, NPEOav2.0, NP2EO, NP1EO, and PEG 400, but the extracts were inactive toward di- ∼ tetraethylene glycol. Aldehydes were formed in the reaction mixture of each substrate with cell-free extracts. From these results, the aerobic metabolic pathway for short EO chain-NP is proposed: A terminal alcohol group of the EO chain is oxidized to a carboxylic acid via an aldehyde, and then one EO unit is removed. This process is repeated until NP is produced.English edition: The paper was edited by a native speaker through KN international ()  相似文献   

2.
The ethoxy chains of short ethoxy chain nonylphenol (NPEOav2.0, containing average 2.0 ethoxy units) were dehydrogenated by cell-free extracts from Ensifer sp. strain AS08 grown on a basal medium supplemented with NPEOav2.0. The reaction was coupled with the reduction in 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and phenazine methosulfate. The enzyme (NPEOav2.0 dehydrogenase; NPEO-DH) was purified to homogeneity with a yield of 20% and a 56-fold increase in specific activity. The molecular mass of the native enzyme was 120 kDa, consisting of two identical monomer units (60 kDa). The gene encoding NPEO-DH was cloned, which consisted of 1,659 bp, corresponding to a protein of 553 amino acid residues. The deduced amino acid sequence agreed with the N-terminal amino acid sequence of the purified NPEO-DH. The presence of a flavin adenine dinucleotide (FAD)-binding motif and glucose–methanol–choline (GMC) oxidoreductase signature motifs strongly suggested that the enzyme belongs to the GMC oxidoreductase family. The protein exhibited homology (40–45% identity) with several polyethylene glycol dehydrogenases (PEG-DHs) of this family, but the identity was lower than those (approximately 58%) among known PEG-DHs. The substrate-binding domain was more hydrophobic compared with those of glucose oxidase and PEG-DHs. The recombinant protein had the same molecular mass as the purified NPEO-DH and dehydrogenated PEG400-2000, NPEOav2.0 and its components, and NPEOav10, but only slight or no activity was found using diethylene glycol, triethylene glycol, and PEG200. English edition: The paper was edited by a native speaker through American Journal Experts ().  相似文献   

3.
An increase in the molar growth yield (YX/S = 14.3–20.3 g/mol) on glucose (25 mM) was achieved after the transition of Zymomonas mobilis ATCC 29191 from anaerobic to aerobic steady state growth at dilution rates of D = 0.31–0.40 1/h and under oxygen-unlimited conditions. The transfer of anaerobically or aerobically grown steady state cells into a fresh medium resulted in the higher values of YX/S. A positive correlation was established between biomass and acetaldehyde yield within the range of 5–9 mM acetaldehyde in the medium. An inhibitory effect of the exogenously added acetaldehyde (Ki = 16.7 ± 2.8 mM) on the ATPase activity was observed in vitro, using cell-free extracts of anaerobically grown Z. mobilis. The results obtained provide evidence that the increased values of biomass yield could be explained by the redirection of ATP usage during aerobic growth of Z. mobilis.  相似文献   

4.
The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents.  相似文献   

5.
Phosphofructokinase (PFK) was purified from foot muscle of aerobic and anaerobic (24 h of anoxia) whelks, Busycotypus canaliculatum. Fructose-6-P kinetics were sigmoidal at pH 7.0 with affinity constants, S0.5, of 2.18 ± 0.10 (nH = 2.5 ± 0.1) and 2.48 ± 0.13 mm (nH = 2.7 ± 0.1) for the enzyme from aerobic versus anaerobic muscle. Affinity for ATP, like that for fructose-6-P, did not differ for the two enzymes (0.031 ± 0.003 for the aerobic vs 0.041 ± 0.007 mm for the anaerobic enzyme), but S0.5 for Mg2+ was significantly different for the two enzymes (0.060 ± 0.006 vs 0.130 ± 0.020 mm). Whelk muscle PFK was activated by NH4+, Pi, AMP, ADP, and fructose-2,6-P2. NH4+ and fructose-2,6-P2 were less effective activators of PFK from anoxic muscle, with apparent Ka's 1.6- and 3.5-fold higher for the anaerobic vs aerobic enzyme. Activators decreased S0.5 for fructose-6-P and reduced nH. With the exception of fructose-2,6-P2, the effects of activators on S0.5 were the same for the enzyme from aerobic and anaerobic muscle; fructose-2,6-P2 at 2.5 μm reduced S0.5 by only 3.3-fold for the anaerobic enzyme compared to 5.5-fold for the aerobic enzyme. ATP was a strong substrate inhibitor of PFK; the enzyme from anaerobic muscle showed greater ATP inhibition, with I50's 1.5- to 2.0-fold lower than those for the aerobic enzyme. The kinetic differences between PFK from anaerobic versus aerobic foot muscle (stronger ATP inhibition and decreased sensitivity to activators for the anaerobic enzyme) were consistent with kinetic differences reported for the phosphorylated versus dephosphorylated forms, respectively, of PFK in other systems. Treatment of PFK from anaerobic muscle with alkaline phosphatase resulted in a decrease in the Ka for fructose-2,6-P2 to a level similar to that of the aerobic enzyme. The physiological stress of anoxia may, therefore, induce a covalent modification of PFK.  相似文献   

6.
Butyribacterium methylotrophicum, an anaerobic acetogen, obligately required pantothenate for growth on either glucose, CH3OH?CO2, H2?CO2, or carbon monoxide. Growth on glucose but not single carbon substrates was stimulated by lipoate and biotin. Sulfide but not sulfate served as the sole sulfur source for growth. This study established thatB. methylotrophicum was both a true autotroph when grown on H2?CO2 and a unicarbonotroph on CO as the sole carbon and energy source. In addition, the vitamin requirements of this species further suggest its distinctiveness fromEubacterium limosum (Butyribacterium rettgeri).  相似文献   

7.
With triethanolamine as sole source of energy and organic carbon, a strictly anaerobic, gram-positive, rod-shaped bacterium, strain LuTria 3, was isolated from sewage sludge and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The G+C content of the DNA was 34.9±1.0 mol %. The new isolate fermented triethanolamine to acetate and ammonia. In cell-free extracts, a triethanolamine-degrading enzyme activity was detected that formed acetaldehyde as reaction product. Triethanolamine cleavage was stimulated 30-fold by added adenosylcobalamin (co-enzyme B12) and inhibited by cyanocobalamin or hydroxocobalamin. Ethanolamine ammonia lyase, acetaldehyde:acceptor oxidoreductase, phosphate acetyltransferase, acetate kinase, and carbon monoxide dehydrogenase were measured in cell-free extracts of this strain. Our results establish that triethanolamine is degraded by a corrinoid-dependent shifting of the terminal hydroxyl group to the subterminal carbon atom, analogous to a diol dehydratase reaction, to form an unstable intermediate that releases acetaldehyde. No anaerobic degradation of triethylamine was observed in similar enrichment assays.Abbreviation NTA nitrilotriacetate  相似文献   

8.
Pure cultures of aerobic bacteria were isolated which could utilize sulfamate, sulfamide or 1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (BTDD) as sole source of sulfur for growth and thus cleave a N–S(O)x bond. The molar growth yields indicated that each source of sulfur was utilized quantitatively. This was confirmed directly for Gordonia sp. strain BT2 utilizing BTDD, which was converted quantitatively via an unidentified intermediate to 2-nitrobenzamide. Another isolate, strain BT1, could utilize saccharin to yield salicylamide, thus cleaving both the N–S(O)x and C–S(O)x bonds.  相似文献   

9.
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) supported the anaerobic (nitrate respiration) but not the aerobic growth of Pseudomonas sp. strain PN-1. Cells grown anaerobically on vanillate oxidized vanillate, p-hydroxybenzoate, and protocatechuic acid (3,4-dihydroxybenzoic acid) with O2 or nitrate. Veratric acid (3,4-dimethoxybenzoic acid) but not isovanillic acid (3-hydroxy-4-methoxybenzoic acid) induced cells for the oxic and anoxic utilization of vanillate, and protocatechuate was detected as an intermediate of vanillate breakdown under either condition. Aerobic catabolism of protocatechuate proceeded via 4,5-meta cleavage, whereas anaerobically it was probably dehydroxylated to benzoic acid. Formaldehyde was identified as a product of aerobic demethylation, indicating a monooxygenase mechanism, but was not detected during anaerobic demethylation. The aerobic and anaerobic systems had similar but not identical substrate specificities. Both utilized m-anisic acid (3-methoxybenzoic acid) and veratrate but not o- or p-anisate and isovanillate. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), 3-O-methylgallic acid (3-methoxy-4,5-dihydroxybenzoic acid), and 3,5-dimethoxybenzoic acid were attacked under either condition, and formaldehyde was liberated from these substrates in the presence of O2. The anaerobic demethylating system but not the aerobic enzyme was also active upon guaiacol (2-methoxyphenol), ferulic acid (3-[4-hydroxy-3-methoxyphenyl]-2-propenoic acid), 3,4,5-trimethoxycinnamic acid (3-[3,4,5-trimethoxyphenyl]-2-propenoic acid), and 3,4,5-trimethoxybenzoic acid. The broad specificity of the anaerobic demethylation system suggests that it probably is significant in the degradation of lignoaromatic molecules in anaerobic environments.  相似文献   

10.
A gram-negative, aerobic bacterium was isolated from soil; this bacterium grew in 50% (vol/vol) suspensions of 1,10-dichlorodecane (1,10-DCD) as the sole source of carbon and energy. Phenotypic and small-subunit ribosomal RNA characterizations identified the organism, designated strain 273, as a member of the genus Pseudomonas. After induction with 1,10-DCD, Pseudomonas sp. strain 273 released stoichiometric amounts of chloride from C5 to C12 α,ω-dichloroalkanes in the presence of oxygen. No dehalogenation occurred under anaerobic conditions. The best substrates for dehalogenation and growth were C9 to C12 chloroalkanes. The isolate also grew with nonhalogenated aliphatic compounds, and decane-grown cells dechlorinated 1,10-DCD without a lag phase. In addition, cells grown on decane dechlorinated 1,10-DCD in the presence of chloramphenicol, indicating that the 1,10-DCD-dechlorinating enzyme system was also induced by decane. Other known alkane-degrading Pseudomonas species did not grow with 1,10-DCD as a carbon source. Dechlorination of 1,10-DCD was demonstrated in cell extracts of Pseudomonas sp. strain 273. Cell-free activity was strictly oxygen dependent, and NADH stimulated dechlorination, whereas EDTA had an inhibitory effect.  相似文献   

11.
A novel cytochrome c4, the first of this type in purple phototrophic bacteria has been discovered in Thiocapsa roseopersicina. The fact that cytochrome c4 has been found in an anaerobic organism puts in question the up hereto suggested role of cytochromes c4 in the aerobic respiratory metabolism. The structure of cytochrome c4 was studied under both aerobic and anaerobic conditions, using differential scanning calorimetry and a combination of redox potentiostatic measurements with CD and UV-Vis absorption techniques. Cytochrome c4 maintained its functional capability at high temperature (60 °C) if it was kept under anaerobic conditions. With increasing temperature under aerobic conditions, however, there are dramatic conformational changes in the protein and coordination changes on the iron side. Presumably oxygen binds to the iron at the position left vacant by the methionine and facilitates conformational changes with low reversibility.  相似文献   

12.
Changes in the kinetics of aerobic and anaerobic metabolism were studied in 26 highly profiled athletes performing bicycle ergometer exercise. The different intensity exercise sessions included those with a critical intensity corresponding to the maximum oxygen consumption up to value of the maximum anaerobic intensity of about 10 MMR units. The maximal aerobic metabolism was maintained in the exercises with a relative intensity of 1.0 to 2.5 MMR units. At the higher values of the exercise relative intensity, the oxygen current consumption exponentially decreased. An increase in the rate of anaerobic glycolytic energy production, which was first recorded at the threshold of anaerobic metabolism (W AT = 0.5 MMR units), increased linearly with a further increase in the exercise relative intensity up to the level of the exhaustion intensity (W ex = 4.7 MMR units). A sharp increase in the rate of an alactic anaerobic process was found at the relative intensity values of 2.5 MMR units, and this increase grew linearly up to values of the maximal anaerobic intensity (W max = 9.5 MMR units).  相似文献   

13.
Alterations in selected aerobic and anaerobic fecal microflora of the mouse were determined during exposure to hyperoxic and normoxic hypo- and hyperbaric environments. Examination of fecal cultures obtained during exposure for 6 weeks to either 60 or 77% oxygen concentration at 1 atmosphere absolute revealed little alteration in the aerobic or anaerobic flora. There appeared to be only a retardation in the reduction of the Klebsiella-Enterobacter flora which normally occurs after weaning. During exposure to hypobaric environments (100% O2, 0.2 atmosphere absolute), significant alterations in concentrations of Escherichia coli, slow lactose fermenters, Klebsiella-Enterobacter, and enterococci were found in some instances. All alterations were toward increased concentrations. Variations in concentrations of different colony types of obligately anaerobic gram-positive (anGPR) and gram-negative (anGNR) rods cultured during the same experiments also occurred. One colony type of anGPR appeared to decrease while a second type increased in numbers. Concentrations of three colony types of anGNR were generally, but not always, increased. During hyperbaric exposure (2.8% O2, 7.5 atmospheres absolute), increased concentrations of Klebsiella-Enterobacter, E. coli, slow lactose fermenters and enterococci were also noted. Changes in numbers of both colony types of anGPR, when occurring, were in the direction of lower numbers. Alteration in numbers of anGNR were in both directions but were more frequent in the direction of higher numbers. After return to normal air for 4 weeks of either hypo- or hyperbaric exposure, fecal concentrations of all organisms tended to revert toward control values with the exception of the anGPR which remained in lower concentrations after termination of the hyperbaric exposure. These observations indicate that, despite the great variation in the fecal flora among individual mice, it is possible to discover the effects induced by altered gaseous environments.  相似文献   

14.
Chemical speciation and partitioning of radiolabeled HgCl2 were studied in model aquatic systems consisting of undisturbed eutrophic lake sediment and water in plastic cylinders. The cylinders were either gradually made anaerobic by a gentle flow of N2-CO2 or kept aerobic by air flow. The proportion of methylated 203Hg was significantly higher, in both water and sediment, in the anaerobic systems than in the aerobic systems. The composition and total concentration of fatty acids originating from bacterial phospholipids, as well as the concentration of vitamin B12, including related cobalamins, were similar in sediments from the anaerobic and aerobic systems. Bacterial cell numbers were, on average, 3.6 times higher in the anaerobic water columns than in the aerobic ones. Volatilization of 203Hg occurred in all systems except in an autoclaved control and was of similar magnitudes in the anaerobic and aerobic systems. Incorporation of 203Hg into the sediment was significantly faster in the aerobic systems than in the anaerobic systems. These results suggest that episodes of anoxia in bottom waters and sediment cause an increase in net mercury methylation and, hence, an increase in bioavailable mercury.  相似文献   

15.
Biochar adsorption presents a potential remediation method for the control of hydrophobic organic compounds (HOCs) pollution in the environment. It has been found that HOCs bound on biochar become less bioavailable, so speculations have been proposed that HOCs will persist for longer half-life periods in biochar-amended soil/sediment. To investigate how biochar application affects coupled adsorption-biodegradation, nonylphenol was selected as the target contaminant, and biochar derived from rice straw was applied as the adsorbent. The results showed that there was an optimal dosage of biochar in the presence of both adsorption and biodegradation for a given nonylphenol concentration, thus allowing the transformation of nonylphenol to be optimized. Approximately 47.6% of the nonylphenol was biodegraded in two days when 0.005 g biochar was added to 50 mg/L of nonylphenol, which was 125% higher than the relative quantity biodegraded without biochar, though the resistant desorption component of nonylphenol reached 87.1%. All adsorptive forms of nonylphenol (f rap, f slow, f r) decreased gradually during the biodegradation experiment, and the resistant desorption fraction of nonylphenol (f r) on biochar could also be biodegraded. It was concluded that an appropriate amount of biochar could stimulate biodegradation, not only illustrating that the dosage of biochar had an enormous influence on the half-life periods of HOCs but also alleviating concerns that enhanced HOCs binding by biochar may cause secondary pollution in biochar-modified environment.  相似文献   

16.
Mösche M 《Biodegradation》2004,15(5):327-336
The anaerobic degradability of alcohol ethoxylates with various degrees of branching and several related substances was studied. Different inocula were employed in order to increase the probability of obtaining capable bacteria, and the degradation assays were fed with several small doses of the test substances in order to avoid inhibition by too high initial concentrations. Mineralization was quantified by monitoring the biogas production and inorganic carbon concentration in the liquid phase. Almost complete mineralization was achieved in the assays with linear alcohol ethoxylate, poly(ethylene glycol), dodecanol, 2-ethyl-hexanoic acid and 3-methyl-valeric acid. No significant degradation was detected in the assays with highly branched alcohol ethoxylate, 2-butyl-branched alcohol ethoxylate, alcohol alkoxylate, poly(propylene glycol) and iso-tridecanol. A 2-ethyl-branched alcohol ethoxylate was transformed to (2-ethyl-hexyloxy)-acetate, which was not further degraded. Apparently already the first step of anaerobic degradation of alcohol ethoxylates, the ethoxylate chain shortening, is sterically hindered by the alkyl branching. Alkyl branching in alcohol ethoxylates and the inclusion of propylene oxide units in alcohol alkoxylates seem to have a clearly more detrimental effect on anaerobic degradability than on aerobic degradability.  相似文献   

17.
Citrobacter amalonaticus Y19 (Y19) was isolated because of its ability for carbon monoxide-dependent hydrogen production (water–gas shift reaction). This paper reports the assimilation of glycerol and the production of 1,3-propanediol (1,3-PDO) by Y19. Genome sequencing revealed that Y19 contained the genes for the utilization of glycerol and 1,2-propanediol (pdu operon) along with those for the synthesis of coenzyme B12 (cob operon). On the other hand, it did not possess the genes for the fermentative metabolism of glycerol of Klebsiella pneumoniae, which consists of both the oxidative (dhaD and dhaK) and reductive (dhaB and dhaT) pathways. In shake-flask cultivation under aerobic conditions, Y19 could grow well with glycerol as the sole carbon source and produced 1,3-PDO. The level of 1,3-PDO production was improved when vitamin B12 was added to the culture medium under aerobic conditions. Under anaerobic conditions, cell growth and 1,3-PDO production on glycerol was also possible, but only when an exogenous electron acceptor, such as nitrate or fumarate, was added. This is the first report of the glycerol metabolism and 1,3-PDO production by C. amalonaticus Y19.  相似文献   

18.
19.
The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory.  相似文献   

20.
Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50–70 mg l?1 of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l?1), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24–48 mg l?1). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14–34 mg l?1). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号