首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《植物生态学报》1958,44(7):772
Aims Nutrient availability is an external factor that affect the growth of seagrasses. However, the demand for and absorption of different forms of nitrogen and phosphorus by different tissues of seagrasses are unclear. In this study, the uptake of nitrogen and phosphorus by Zostera marina was studied to determine the nutrient uptake kinetics. The objectives of this research are to: 1) investigate the absorption characteristics of ammonia nitrogen, nitrate nitrogen and phosphorus in Z. marina; 2) evaluate the differences in absorption between the different forms of nitrogen; and 3) analyse the differences in absorption between the different tissues of Z. marina.Methods Equipment was used to separate the aboveground and belowground tissues of Z. marina. Six concentration levels of ammonia nitrogen, nitrate nitrogen and phosphorus were established to experimentally test the uptake kinetics of nutrients by Z. marina. The nutrient concentrations in different parts of seawater column were measured to determine the nutrient changes and calculate the kinetic characteristics of nutrient uptake.Important findings 1) The absorption of ammonia nitrogen, nitrate nitrogen and phosphorus by Z. marina was consistent with the characteristics of saturated absorption kinetics. The relationship between the absorption rate and the nutrient concentrations in water could be described by the Michaelis-Menten equation. 2) The maximum absorption rate (Vmax) of ammonia nitrogen by Z. marina (52 μmol·g-1·h-1) was significantly higher than that of nitrate nitrogen (39 μmol·g-1·h-1). 3) Both aboveground and belowground tissues of Z. marina could absorb nutrient, but the Vmax of leaves (aboveground tissues) for ammonia nitrogen, nitrate nitrogen and phosphorus absorption were 43.1, 30.5 and 15.6 μmol·g-1·h-1, respectively, which were 2.6-fold, 1.2-fold and 6-fold higher than the corresponding Vmax of belowground tissues. The results show that the absorption capacity of Z. marina for ammonia nitrogen is higher than that for nitrate nitrogen, and the absorption of nitrogen and phosphorus may depend primarily on the aboveground tissues (leaves). The results provide a theoretical basis for the study of the mechanisms of nitrogen and phosphorus uptake and utilization by Z. marina and the evaluation of marine ecological impacts.  相似文献   

2.
营养盐是影响海草生长的关键因子, 目前有关海草不同组织对不同形式氮和磷的吸收特征尚不明确。该研究通过利用海草地上和地下组织分隔培养装置, 设置不同的氨态氮、硝态氮和磷酸盐浓度, 探究了大叶藻(Zostera marina)植株及其地上和地下组织对氮磷营养盐的吸收动力学特征。结果显示: (1)大叶藻对氮磷的吸收符合饱和吸收动力学特征, 吸收速率和水体氮磷浓度可用米式方程描述; (2)大叶藻植株对NH4+-N的最大吸收速率(Vmax, 52 μmol·g-1·h-1)显著高于其对NO3--N的Vmax (39 μmol·g-1·h-1); (3)大叶藻地上组织和地下组织均可吸收氮磷, 但地上组织对氨态氮、硝态氮、磷酸盐的Vmax分别为43.1、30.5和15.6 μmol·g-1·h-1, 为地下组织的2.6、1.2和6倍。结果表明, 大叶藻对氨态氮的吸收能力高于硝态氮, 且对氮磷的吸收可能主要依赖地上组织(叶片)。结果为查明大叶藻对氮磷的吸收利用机制及评估大叶藻的海洋生态效应提供了理论依据。  相似文献   

3.
施肥对桢楠幼苗光合生理及生长特性的影响   总被引:3,自引:0,他引:3  
贺维  胡庭兴  王锐  钟宇  周贤  敬辽 《西北植物学报》2014,34(6):1187-1197
以1年生桢楠(Phoebe zhennan)幼苗为材料,采用盆栽试验方法,选用氮肥(NF)、复合肥(CF)、有机肥(OF)和混合肥(MF)4种肥料,依据年施氮量为标准设置低(L,0.3g/桶)、中(M,0.6g/桶)、高(H,0.9g/桶)3个施肥水平,于5、7、9月分3次将各肥料平均施入各栽植桶中,考察施肥1个月后桢楠幼苗的形态和光合生理指标,探讨施肥对桢楠幼苗光合生理及生长特性的影响。结果显示:(1)3个施肥水平中,中氮水平(M)对桢楠幼苗的生长促进效应最大;各种肥料中又以CF肥效最差,NF的肥效仅在初期(5~6月)比较明显,施MF的后期(9~10月)养分供应相对不足,而OF能持续地为植株提供养分。(2)施肥可以促进桢楠幼苗叶片叶绿素合成,延长绿叶功能期,并增大净光合速率,其中OF和MF的效果更明显,且有效地提高了幼苗在强光照、高浓度CO2环境下的光合能力。(3)除CF以外,施其他3种肥料均能不同程度地增加桢楠幼苗苗高及地径生长量,且以中氮水平的有机肥(MOF)促进效应最大,其生长量可以达到对照(CK,不施肥)的2倍。综上可知,中氮量有机肥是桢楠幼苗的最佳肥料施用方式。  相似文献   

4.
本研究采集滨海盐渍土开展盆栽试验,分析施加有机肥、木霉菌剂及菌肥对枸杞氮素吸收、同化、积累和利用效率的影响,以揭示木霉对盐渍逆境下枸杞的促生机理。有机肥为木霉菌肥的灭菌物,不含木霉活菌,但两者氮、磷、钾等养分含量无显著差异。结果表明: 施加有机肥、木霉菌剂和菌肥处理较对照均显著提高了根系分生区NO3-、NH4+内流速率和成熟区NO3-内流速率,且施加菌肥的提升幅度高于施加有机肥。与对照相比,盐渍土壤施加木霉菌剂及菌肥显著增加了根、茎、叶生物量和氮含量以及植株氮累积量,增强了枸杞根和叶中硝酸还原酶、亚硝酸还原酶和谷氨酰胺合成酶活性,提高了枸杞氮素吸收效率、光合速率、稳定碳同位素丰度值和光合氮素利用效率,而且施加菌肥的效果明显优于施加有机肥。综上,木霉能增强盐渍逆境下枸杞氮素吸收、同化和积累,提升光合固碳能力和氮素利用效率,最终促进植株生长。  相似文献   

5.
The growth of two provenances of Pinus sylvestris L. were compared with two provenances of Picea abies (L.) Karst. and with Pinus contorta Dougl. when grown in solution cultures with low nutrient concentrations. Nitrogen was added at different exponentially increasing rates, and the other nutrients were added at a rate high enough to ensure free access of them to the seedlings. During an initial period of the culture (a lag phase), when the internal nutrient status was changing from optimum to the level of the treatment, deficiency symptoms appeared. The needles yellowed and the root/shoot ratio increased. The initial phase was followed by a period of exponential growth and steady-state nutrition. The needles turned green again, and the root/shoot ratio stabilized at a level characteristic of the treatment. These patterns were the same as previously reported for other tree species. The relative growth rate during exponential growth was numerically closely equal to the relative nitrogen addition rate. The maximum relative growth rates were about 6 to 7.5% dry weight increase day-1. This is a much lower maximum than for broad-leaved species (about 20 to 30% day-1) under similar growth conditions. The internal nitrogen concentrations of the seedlings and the relative growth rates were stable during the exponential period. Close linear relationships were found between these parameters and the relative addition rate up to maximum growth. During steady state the relative growth rates of the different plant parts were equal. However, there were large differences between genotypes in absolute root growth rate at the same seedling size because of differences in root/shoot ratio. Lodgepole pine had the highest root growth rate, whereas that of Norway spruce, especially the southern provenance, was remarkably low. Yet, Norway spruce had a high ability to utilize available nutrients. In treatments with free nutrient access, growth allocation to the shoot had a high priority in all genotypes, but there was still a marked tendency for luxury uptake of nutrients. Nitrogen productivity (growth rate per unit of nitrogen) was lower than in broadleaved species and highest in lodgepole pine. The relevance of the dynamic factors, i.e. maximum relative growth rate, nutrient uptake rate, nitrogen productivity, growth allocation and root growth rate, are discussed with regard to conifer characteristics and selection value.  相似文献   

6.
张烁  张宇  吴海波  刘洋荥  张鹏 《植物研究》2018,38(3):384-390
以小黑杨当年播种苗为材料,研究了不同施氮量(12,24和48 mg·株-1)和不同形态氮素(有机氮和无机氮)施肥对小黑杨幼苗生长的影响,以探讨小黑杨对氮基酸类有机氮素施肥的生长响应。结果表明:无论施无机氮(硝酸铵)还是有机氮(精氨酸),小黑杨幼苗的苗高、地径、总生物量都是随施氮量的增加而增加,但是中等施氮量处理的幼苗氮利用效率最高。无机氮(硝酸铵)和有机氮(精氨酸)处理的幼苗在相同施氮水平下生长表现无明显差异,施用有机氮可以与施用无机氮获得相同的促进苗木生长的效果。不同氨基酸及其组合肥料施用对小黑杨幼苗生长的影响显著。单一氨基酸施肥情况下,施用精氨酸促进苗木生长的效果最好,谷氨酸次之,甘氨酸最差;氨基酸组合施肥情况下,有精氨酸的组合施肥苗木生长好,有甘氨酸的组合施肥苗木生长差。不同氨基酸施肥处理对小黑杨幼苗各器官氮含量没有明显影响。  相似文献   

7.
The fungus Myrothecium verrucaria (MV) has previously been shown to have potential as a bioherbicide for kudzu (Pueraria lobata) control. It has also been shown that MV wild-type (MV-wt) often forms sectors, when grown on various nutrient media. Experiments compared MV-wt and MV sector efficacy when grown on agar or on rice grains. In greenhouse evaluations of sectors, applied as foliar sprays in water or in other formulations (corn oil, surfactant, and corn oil plus surfactant) for efficacy against kudzu seedlings, some sectors possessed bioherbicidal activity equal that of MV-wt, but others exhibited lower activity. Without a dew period, aqueous formulations of MV-wt, a yellow sector, and a white sector provided zero control, but all three isolates were active without a dew period when formulated in corn oil, Silwet L-77 surfactant, and in surfactant plus corn oil. Generally, the yellow sector was less effective than the other two isolates in any formulations, and the MV-wt and white sector provided approximately 100% mortality of the test plants. Dew (10 h) increased weed control to 100, 33, and 65%, respectively, for MV-wt, the yellow sector and the white sector. All isolates provided nearly 100% control in the oil and surfactant formulations with a dew period compared to treatments receiving no dew. Soil incorporation studies were also performed to compare MV-wt efficacy of preparations grown on agar versus growth on rice grains. Higher efficacies (1.75-3.3-fold increase) were obtained from rice grain preparations compared to preparations grown on agar, when preparations were incorporated at several rates into soil prior to planting. Cell-free extracts of the MV-rice cultures were also phytotoxic to kudzu seedlings up to the eight- to 10-leaf growth stage. Thus, formulation, growth media, and the application method are important determinants in the efficacy of MV and MV sectors on kudzu seedlings.  相似文献   

8.
Tissue culture plantlets of loblolly pine ( Pinus taeda L.) were compared to seedlings to quantify growth and developmental differences. The two plant types were grown in containers in a greenhouse and sampled periodically for twenty weeks. Dry weights and nitrogen and phosphorus concentrations of the shoots and roots were determined every two weeks.
During the twenty weeks in the greenhouse, seedlings grew to a greater size than the plantlets, but the relative rates of growth were approximately equal. Plantlets had significantly lower concentrations of nitrogen and phosphorus per g of shoot dry weight. Seedlings were much more efficient at nutrient uptake per g of dry weight of root. Plantlets had thick, unbranched roots, which were inefficient at nitrogen and phosphorus uptake. Nutrient uptake based on an index of root surface area was equal in the plantlets and seedlings.
The main differences between plantlets and seedlings apparently were related to root system morphology rather than physiological processes. The uptake of nutrients showed the greatest difference between the plant types.  相似文献   

9.
Summary The benefit of fertilizer application during establishment of a tree plantation depends on effective nutrient uptake and the utilization of the nutrients in growth. Five urea treatments (0, 50, 75, 150, and 450 kg N/ha) were applied in a completely randomized plot design to a field planted with American sycamore (Platanus occidentalis L.) seedlings to evaluate growth responses and nitrogen use efficiency during the first season of plantation establishment. The site was in the Oak Ridge Reservation in eastern Tennessee on a highly weathered soil. Harvests were conducted on 3 occasions during a 22 week experimental period, and dry weights of stems, leaves, and large and small roots were measured. Chemical analyses were conducted on plant tissues from the 0, 75, and 450 kg N/ha treatments. Plant dry weight increased with urea application and growth analysis showed that this was mainly associated with increase in leaf area and to a minor extent with increase in net assimilation rate. Root weight increased significantly with urea application. The specific absorption rate of roots for several nutrients was greater at higher urea levels for the first 2 harvest periods, but this pattern reversed during the 3rd growth period. Surprisingly, manganese uptake and the specific absorption rate for manganese were enhanced with higher urea application. The acidifying effect of urea nitrification is a likely explanation for the increased Mn availability, and nitrate leaching and/or nitrogen immobilization contributed to low uptake of urea-N by the seedlings. The proportion of the applied nitrogen incorporated into the seedlings was 1.5 and 0.6% for the 75 and 450 kg N/ha urea treatments, respectively. Broadcast fertilizer application is not an effective way of supplying nutrients to seedlings during plantation establishment.  相似文献   

10.
田歌  王芬  彭玲  何流  姜远茂  葛顺峰 《生态学杂志》2017,28(7):2254-2260
研究平邑甜茶幼苗NO3--N吸收和利用特性对不同供钾水平的响应,旨在明确钾肥对氮肥吸收利用的影响,从而为果园科学施肥提供理论依据.以平邑甜茶幼苗为材料进行砂培试验,设置K0、K1、K2、K3、K4、K5、K6 7个钾浓度处理,分别相当于0、2、4、6、8、10、12 mmol·L-1 K+,运用15N同位素示踪技术和非损伤扫描离子选择电极技术,测定了不同供钾水平下平邑甜茶的氮素吸收和利用情况.结果表明: K3处理平邑甜茶幼苗根系活力、硝酸还原酶活性以及根系形态指标均显著高于其他处理.与其他处理相比,K3处理根、茎、叶从肥料中吸收分配到的15N 量对该器官全氮量的贡献率(Ndff)均达到最高,分别为K0处理的1.36、1.33和1.47倍.随供钾水平的增加,植株氮素利用率呈现先增高后降低的趋势,且在K3处理时最大,为23.3%,是K0处理的3.04倍.非损伤微测技术结果显示,K3处理时,平邑甜茶根系对NO3-有强烈吸收且内流速度达到最大,为19.34 pmol·cm-2·s-1;在缺钾(K0)和高钾(K6)处理时有明显外排趋势.因此,钾的亏缺或过量均抑制氮素的吸收和利用,适当供钾能够促进幼苗根系生长,增强硝酸还原酶活性,从而促进平邑甜茶对氮素的吸收.  相似文献   

11.
研究平邑甜茶幼苗NO3--N吸收和利用特性对不同供钾水平的响应,旨在明确钾肥对氮肥吸收利用的影响,从而为果园科学施肥提供理论依据.以平邑甜茶幼苗为材料进行砂培试验,设置K0、K1、K2、K3、K4、K5、K6 7个钾浓度处理,分别相当于0、2、4、6、8、10、12 mmol·L-1 K+,运用15N同位素示踪技术和非损伤扫描离子选择电极技术,测定了不同供钾水平下平邑甜茶的氮素吸收和利用情况.结果表明: K3处理平邑甜茶幼苗根系活力、硝酸还原酶活性以及根系形态指标均显著高于其他处理.与其他处理相比,K3处理根、茎、叶从肥料中吸收分配到的15N 量对该器官全氮量的贡献率(Ndff)均达到最高,分别为K0处理的1.36、1.33和1.47倍.随供钾水平的增加,植株氮素利用率呈现先增高后降低的趋势,且在K3处理时最大,为23.3%,是K0处理的3.04倍.非损伤微测技术结果显示,K3处理时,平邑甜茶根系对NO3-有强烈吸收且内流速度达到最大,为19.34 pmol·cm-2·s-1;在缺钾(K0)和高钾(K6)处理时有明显外排趋势.因此,钾的亏缺或过量均抑制氮素的吸收和利用,适当供钾能够促进幼苗根系生长,增强硝酸还原酶活性,从而促进平邑甜茶对氮素的吸收.  相似文献   

12.
Slow growth rate restricts the development and growth of seedlings due to nutrients deficiency or nutrient imbalance. Exponential fertilization can enhance the internal nutrient reserves in seedlings at the nursery-stage and strengthen their resistance to adverse conditions. In this study, nitrogen requirements for producing Hydrangea macrophylla ‘Hanatemari’ that robust seedlings, nutrient dynamics, biomass and growth, was examined utilizing exponential fertilization. The potted seedlings were fertilized with urea under exponential regime at rates of 0.5, 1.5 and 2.0 g nitrogen/plant (EF1, EF2, and EF3), respectively. In addition, an unfertilized group treated with equal volume of deionized water was used as control. The results showed that seedlings under 1.5 g N/plant (EF2) had the highest plant growth index and total biomass. The nutrient concentrations of different organs varied in different fertilization treatments. Based on the results of current study, it is concluded that 1.5 g N/plant (EF2) is suitable exponential fertilization treatment for the culture of hydrangea seedlings. Our treatments results showed that 2.0 g N/plant is not suitable for seedling culturing, because of serious nutrient toxicity. These findings will help to improve seedling quality and strengthen the production of H. macrophylla for plantation.  相似文献   

13.
湛江特呈岛红树植物群落结构特征   总被引:1,自引:0,他引:1  
2008年6月,采用样方调查法对湛江特呈岛红树植物群落结构及白骨壤(Avicennia marina)的种群特征进行了全面调查.结果表明:该地区红树林是白骨壤纯林以及白骨壤为主,有红海榄(Rhizophora stylosa)、木榄(Bruguieragymnorrhiza)和桐花树(Aegiceras corniculatum)的混交林.白骨壤在潮滩上连续分布,红海榄、木榄和桐花树生长于近陆林缘及潮滩的中部,物种多样性指数由陆缘向海缘呈降低趋势.通过分析白骨壤种群的株高、地径在潮滩上的变化规律得出年幼的个体聚集于近陆林缘,近海林缘较少.白骨壤种群的年龄结构为增长型,但是根据生境条件及白骨壤种群在海滩上的分布格局,分析得出该红树林资源处于退化的状态.  相似文献   

14.
Ectomycorrhizal seedlings of Scots pine ( Pinus sylvestris L. cv.), inoculated with the fungus Suillus bovinus (L. ex Fr.) O. Kuntze, and non-mycorrhizal controls were grown in growth units with a circulating culture solution. Steady-state nutrition and constant relative growth rates were achieved by means of varied relative nutrient addition rates and free access of nutrients. Typical mycorrhizas always formed within a short period of time after inoculation. The nutrition/growth relationships were in principle similar to previous studies under steady-state conditions: there were close linear relationships between relative addition rate, relative growth rate and internal nitrogen concentration, i.e. an equilibrium established between nutrients added and taken up. This occurred when infected and uninfected seedlings were grown separately. When grown together in the same growth unit, there are indications that the fungus influenced the exudation pattern of the uninfected seedlings. More carbon was thus provided to the unspecified microflora in the cultivation system, and it was able to grow and withhold nitrogen from the seedlings. The mycorrhizal infection did not increase the specific uptake capacity of the roots, and the fungus constituted a sink for carbon. However, the nitrogen productivity (growth rate per unit of nitrogen per unit of time) was similar for mycorrhizal and non-mycorrhizal seedlings, so that there might be mechanisms which compensate for the carbon cost.  相似文献   

15.
The aim of this investigation was to estimate the optimum nutrient requirements and responses to low relative nutrient addition rates of seedlings of two important broadleaf tree species in China, Populus simonii Carr. and Paulownia tomentosa (Thunb.) Steud. In preliminary experiments the optimum nutrient proportions were estimated under high concentration conditions. The nutrients consumed were replaced by means of daily additions determined by pH and conductivity titrations without changing the nutrient solutions. A relatively high K level was needed in relation to nitrogen; higher than in birch or grey alder seedlings. To obtain a high relative growth rate, suitable proportions by weight were 100 N:70 K:14 P:7 Ca:7 Mg for the Populus seedlings and 100 N:75 K:20 P:8 Ca:9 Mg for the Paulownia seedlings.
In studies of nutrient stress responses the relative nutrient addition rate was used as the treatment variable under low conductivity conditions. The responses and relationships were similar to those described for birch, grey alder and Salix . The relative addition rate, and there was also a strong linear regression between relative growth rate and nitrogen status. Relative growth rates were high and the maximum weight increase was about 19% day−1 in Populus and over 25% day−1 in Paulownia . The nitrogen productivity of Paulownia was very high, 0.26 g dry weight (g N)−1 h−1, and for Populus it was 0.16 g dry weight (g N)−1 h−1.  相似文献   

16.
明确紫云英配施化肥条件下水稻对氮素吸收利用和紫云英氮在水稻-土壤体系的吸收利用、分配及残留规律,能够为豫南稻区合理施肥提供依据.本研究利用原状土柱模拟和15N示踪技术,研究等氮条件下不施肥(CK)、化肥+22500 kg·hm-2紫云英(FM1)、化肥+30000 kg·hm-2紫云英(FM2)、化肥+37500 kg...  相似文献   

17.
Birch (Betula verrucosa Ehrh.) and grey alder (Alnus incana Moench) seedlings were grown with varied relative addition rates of all nutrients, up to optimum for vegetative growth. The root medium was basically distilled water to which the nutrients, contained in stock solutions in fixed proportions, were added every second hour and in exponentially increased amounts for consumption during the subsequent period. The nutrient weight proportions previously found to be required in birch (100 N:65 K:13 P) were used in all treatments. However, the nutrient proportions required in grey alder were found to be somewhat different (100 N:50 K:18 P). The use of the required proportions in the additions was important for maintenance of maximum growth, efficient nutrient utilization, and low concentrations in the root medium. Luxury consumption and inefficiency occurred at high concentrations. The results show that the nutrient requirements are sufficiently defined, for different relative growth rates, by the nutrient proportions and the relative addition rate. No clear relationships were found between conductivity or concentration in the root medium and the addition rate, net uptake rate, nutrient status, or relative growth rate. The results are in good agreement with data from low concentration and depletion experiments reported in the literature, showing that non-limited uptake rates occur down to very low concentrations. Thus, there is strong evidence that concentration has been incorrectly used when applied as the treatment variable for plant nutrition in plant science and cultivation practice. The dominant factors in sub-optimum and optimum nutrition are the amounts of nutrients available per unit of time, the growth rate, and the nutrient proportions. At low concentration levels, physical factors such as stirring and flow rate of nutrient solution and boundary layer effects are decisive for the rates with which the nutrients become available to the roots. Therefore, at low levels, concentration alone cannot be used as the factor determining nutrient uptake rate. At high levels, concentration is effective as a supra-optimum factor and increased internal percentage contents cause decreased uptake efficiency, thus counter-acting the concentration effect. Nitrogen effects dominated the stress indications when the internal nitrogen percentage content decreased from optimum to the level of the treatments in the beginning of the experiments. Leaf deficiency symptoms disappeared and the root/shoot ratio change ceased when nitrogen status stabilized. Strong linear regressions were found between any two of the variables: relative addition rate of nutrients, relative growth rate, and nutrient status.  相似文献   

18.
以长白山地区典型树种——水曲柳为研究对象,通过室外控制试验,分析了氮、微生物及其相互作用对水曲柳幼苗生物量分配、生长和光合作用的影响.于2017年6月采用二因素随机区组设计试验,共4个处理:对照(F)、加氮(FN)、灭菌(FS)、灭菌加氮(FSN),6个重复区组,每个区组内每处理3个重复,即每个处理有18株幼苗.2018年8月中旬进行光合指标的测定,并于同年9月初收获植物,测量生物量及生长指标.结果表明: 与F相比,FN使水曲柳幼苗的总干质量显著提高14%,基径提高9%,叶绿素含量、净光合速率(Pn)、气孔导度(gs)、蒸腾速率(Tr)分别显著提高75%、318%、231%、227%;FS使总干质量显著提高12%,基径提高9%,叶绿素含量、PngsTr分别显著提高34%、213%、120%、115%;FSN使总干质量显著提高23%,基径提高14%,叶绿素含量、PngsTr分别显著提高81%、672%、312%、273%.氮、土壤微生物及其交互作用对水曲柳幼苗的生物量、生长和光合作用有着显著作用,土壤微生物在一定程度上调控了水曲柳幼苗对氮的响应.  相似文献   

19.
不同施肥条件下毛叶苕子的腐解及养分释放特征   总被引:6,自引:0,他引:6  
利用田间埋袋法,研究不施肥、施氮肥、施石灰3种处理对豫南稻田毛叶苕子腐解及养分释放特征的影响.结果表明:不同施肥处理下毛叶苕子累积腐解率为65.3%~72.5%,腐解过程中呈现前11 d腐解较快、后期腐解缓慢并逐渐趋于平稳的趋势.不同处理养分释放率表现为钾>磷>碳>氮,试验结束时(翻压148 d),碳、氮、磷、钾的累积释放率分别为83.6%~84.6%、78.2%~81.2%、89.8%~91.4%、96.3%~97.0%.在整个腐解期内,毛叶苕子氮释放特征与腐解特征相似,与不施肥相比,施石灰促进毛叶苕子腐解及氮、磷、钾养分释放;施氮肥促进毛叶苕子磷释放,抑制钾释放;施石灰和氮肥对碳释放均无显著影响.施氮肥处理腐解0~11 d促进毛叶苕子腐解及氮释放,腐解11~148 d抑制毛叶苕子腐解及氮释放.采用一级动力学方程及对数函数方程拟合豫南稻区毛叶苕子腐解及碳、氮、磷、钾养分释放特征均达到显著水平,拟合方程的特征参数值与毛叶苕子腐解率及养分释放率呈显著相关.施用石灰促进毛叶苕子腐解及养分释放的效果优于施用氮肥;一级动力学方程及对数函数方程特征参数值可较好地描述毛叶苕子腐解及养分释放能力.  相似文献   

20.
植物幼苗建成阶段是决定种群自然更新的关键生活史阶段。研究林冠环境对常绿阔叶林优势种幼苗建成阶段的影响对该类森林的恢复和管理具有重要意义。2014-2016年, 该研究在重庆市缙云山国家级自然保护区的常绿阔叶林的不同林冠环境(大林窗: >150 m 2, 中林窗: 100-150 m 2, 小林窗: 50-100 m 2, 对照: 林下)下进行栲(Castanopsis fargesii)种子野外播种实验, 并对栲幼苗命运和生长情况进行了3年的持续监测。结果表明: (1)栲幼苗出土时间从7月持续到12月, 出苗时间较长, 大林窗对幼苗出土具有延迟作用; (2)栲种子野外平均萌发率为(62.8 ± 2.0)%, 第3个生长季(2016年)末幼苗平均存活率为(65.1 ± 2.2)%, 枯萎是栲幼苗死亡的主要原因; (3)林冠环境对栲种子萌发率及第1个生长季(2014年)末的幼苗存活率无显著影响, 对第2个(2015年)和第3个生长季末的幼苗存活率具有显著影响; (4)林冠环境在第1个生长季对幼苗生长无明显影响, 但在第2个和第3个生长季具有显著影响, 大、中林窗中幼苗总生物量、株高、基径、根长和叶片数显著高于林下, 比叶面积显著低于林下; (5) 3个生长季内, 4类林冠条件下栲幼苗的叶质量比和茎质量比升高, 根质量比和根冠比降低, 并且从第2个生长季开始大林窗中栲幼苗的叶质量比显著高于林下, 根质量比和根冠比显著低于林下。栲幼苗早期的存活和生长依赖种子储存的能量, 受林冠条件影响较弱, 后期则依赖光合作用, 受林冠条件影响较强, 从整个幼苗建成过程看, 大、中林窗更有利于栲幼苗定居。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号