首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Vertebrate striated muscle contraction is regulated in a Ca(2+)-dependent fashion by tropomyosin (Tm) and troponin (Tn). This regulation involves shifts in the position of Tm and Tn on actin filaments and may include conformational changes in actin that are then communicated to myosin subfragment 1 (S1). To determine whether subdomain 2 of actin plays a role in this regulation, the DNase-I loop 38-52 of this subdomain was cleaved by subtilisin between residues Met(47) and Gly(48). Despite impaired unregulated function, the potentiation and regulation of cleaved actin movement in the in vitro motility assay was not significantly different from that of uncleaved actin. Stopped-flow measurements of ADP release from regulated and unregulated cleaved acto-S1 showed a marked increase in ADP release from acto-S1 in the presence of the regulatory complex. The enhancement of the actin affinity for S1 in the presence of regulatory proteins was greater for uncleaved than for cleaved F-actin. Finally, both cleaved and uncleaved actins protect myosin loop 1 from papain cleavage equally well. Our results suggest that the potentiation of actin function in the in vitro motility assay by regulatory proteins stems from changes in cross-bridge cycle kinetics. In addition, the unimpaired calcium-sensitive regulation of cleaved actin indicates that subdomain 2 conformation does not play an essential role in the regulation process.  相似文献   

2.
In order to elucidate the role of DNA-binding loop of actin (amino acid residues 38-52) in mechanisms of muscle contraction, polarizational fluorimetry and ghost muscle fibers, containing thin filaments reconstructed by intact and subtilisin-cleaved G-actin were used. The thin filaments were modified by fluorescent probes rhodamin-phalloidin and 1,5-IAEDANS. Changes in orientation and mobility of the probes were considered as an indication of changes in actin conformation. The stage AM of ATP hydrolysis cycle was simulated. For this purpose, thin filaments were decorated by myosin subfragment-1 (S1) in the absence of nucleotide. It has been shown that S1 binding to actin is accompanied by changes in orientation and mobility of the fluorescent probes. For intact filaments, the changes of these parameters indicate the formation of a strong binding between S1 and actin. Cleavage of DNA-binding loop by subtilisin markedly inhibits this effect. The cleavage of actin by subtilisin has also been shown to diminish the changes in fiber birefringence, which takes place at the formation of F-actin-S1 complex in the muscle fiber. The spatial organization of the actin DNA-binding loop is suggested to play an important role in determining the character of myosin interaction with actin in the ATP hydrolysis cycle.  相似文献   

3.
The carbethoxylation of histidine residues in G-actin impairs actin polymerization. The histidine residue essential for polymerization was identified as histidine-40 [Hegyi, G., Premecz, G., Sain, B., & Mühlrad, A. (1974) Eur. J. Biochem. 44, 7-12]. Non-polymerizable actin was separated from the polymerizable fraction after partial carbethoxylation. The non-polymerizable actin recovered the ability to polymerize following addition of phalloidin. Taking into account the evidence that phalloidin does not bind to G-actin in the absence of salt, the results indicate that the actin monomer undergoes a conformational change and subsequently binds phalloidin before polymerization. The resulting polymers activated S1 ATPase activity as effectively as control F-actin. In the presence of tropomyosin and troponin, a strong inhibition of actin-activated ATPase activity was observed in the absence of Ca2+, although no inhibition was observed in the presence of Ca2+. These results indicate that His-40 is not directly involved in a myosin binding site nor in a tropomyosin-troponin binding site.  相似文献   

4.
Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.  相似文献   

5.
In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca2+ and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. Involvement of the actin C-terminus in binding of tropomyosin-troponin in different activation states and the regulation of actin-myosin interactions were examined using actin modified by proteolytic removal of three C-terminal amino acids. Actin C-terminal modification has no effect on the binding of tropomyosin or tropomyosin-troponin + Ca2+, but it reduces tropomyosin-troponin affinity in the absence of Ca2+. In contrast, myosin S1 induces binding of tropomyosin to truncated actin more readily than to native actin. The rate of actin-activated myosin S1 ATPase activity is reduced by actin truncation both in the absence and presence of tropomyosin. The Ca2+-dependent regulation of the ATPase activity is preserved. Without Ca2+ the ATPase activity is fully inhibited, but in the presence of Ca2+ the activation does not reach the level observed for native actin. The results suggest that through long-range allosteric interactions the actin C-terminus participates in the thin filament regulation.  相似文献   

6.
Effects of subtilisin cleavage of actin between residues 47 and 48 on the conformation of F-actin and on its changes occurring upon binding of myosin subfragment-1 (S1) were investigated by measuring polarized fluorescence from rhodamine-phalloidin- or 1, 5-IAEDANS-labeled actin filaments reconstructed from intact or subtilisin-cleaved actin in myosin-free muscle fibers (ghost fibers). In separate experiments, polarized fluorescence from 1, 5-IAEDANS-labeled S1 bound to non-labeled actin filaments in ghost fibers was measured. The measurements revealed differences between the filaments of cleaved and intact actin in the orientation of rhodamine probe on the rhodamine-phalloidin-labeled filaments, orientation and mobility of the C-terminus of actin, filament flexibility, and orientation and mobility of the myosin heads bound to F-actin. The changes in the filament flexibility and orientation of the actin-bound fluorophores produced by S1 binding to actin in the absence of ATP were substantially diminished by subtilisin cleavage of actin. The results suggest that loop 38-52 plays an important role, not only in maintaining the F-actin structure, but also in the conformational transitions in actin accompanying the strong binding of the myosin heads that may be essential for the generation of force and movement during actin-myosin interaction.  相似文献   

7.
The Dictyostelium/Tetrahymena-chimeric actin (Q228K/T229A/A230Y) showed higher Ca(2+)-activation of myosin S1 ATPase in the presence of tropomyosin-troponin. The crystal structure of the chimeric actin is almost the same as that of wild-type except the conformation of the side chain of Leu236. Here, we introduced an additional mutation (L236A), in which the side chain of Leu236 was truncated, into the chimeric actin (Q228K/T229A/A230Y/L236A). Without regulatory proteins, the new mutant actin showed normal myosin S1 activation and normal sliding velocity. However, in the presence of tropomyosin, the new mutant actin activated myosin S1 ATPase higher than the wild-type actin and showed higher velocities in in vitro motility assay at low HMM concentrations. These results suggest that the mutations of A230Y and L236A in the actin subdomain-4 facilitate the transition of thin filaments from a "closed" state to an "open" state.  相似文献   

8.
Actin labeled at Gln-41 with dansyl ethylenediamine (DED) via transglutaminase reaction was used for monitoring the interaction of myosin subfragment 1 (S1) with the His-40-Gly-42 site in the 38-52 loop on F-actin. Proteolytic digestions of F-actin with subtilisin and trypsin, and acto-S1 ATPase measurements on heat-treated F-actin revealed that the labeling of Gln-41 had a stabilizing effect on subdomain 2 and the actin filaments. DED on Gln-41 had no effect on the values of K(m) and Vmax of the acto-S1 ATPase and the sliding velocities of actin filaments in the in vitro motility assays. This suggests either that S1 does not bind to the 40-42 site on actin or that such binding is not functionally important. The binding of monoclonal antidansyl IgG to DED-F-actin did not affect acto-S1 binding in the absence of nucleotides, indicating that the 40-42 site does not contribute much to rigor acto-S1 binding. Myosin-induced changes in subdomain 2 on actin were manifested through an increase in the fluorescence of DED-F-actin, a decrease in the accessibility of the probe to collisional quenchers, and a partial displacement of antidansyl IgG from actin by S1. It is proposed that these changes in the 38-52 loop on actin originate from S1 binding to other myosin recognition sites on actin.  相似文献   

9.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

10.
Caldesmon, an actin/calmodulin binding protein, inhibits acto-heavy meromyosin (HMM) ATPase, while it increases the binding of HMM to actin, presumably mediated through an interaction between the myosin subfragment 2 region of HMM and caldesmon, which is bound to actin. In order to study the mechanism for the inhibition of acto-HM ATPase, we utilized the chymotryptic fragment of caldesmon (38-kDa fragment), which possesses the actin/calmodulin binding region but lacks the myosin binding portion. The 38-kDa fragment inhibits the actin-activated HMM ATPase to the same extent as does the intact caldesmon molecule. In the absence of tropomyosin, the 38-kDa fragment decreased the KATPase and Kbinding without any effect on the Vmax. However, when the actin filament contained bound tropomyosin, the caldesmon fragment caused a 2-3-fold decrease in the Vmax, in addition to lowering the KATPase and the Kbinding. The 38-kDa fragment-induced inhibition is partially reversed by calmodulin at a 10:1 molar ratio to caldesmon fragment; the reversal was more remarkable in 100 mM ionic strength at 37 degrees C than in 20 or 50 mM at 25 degrees C. Results from these experiments demonstrate that the 38-kDa domain of caldesmon fragment of myosin head to actin; however, when the actin filament contains bound tropomyosin, caldesmon fragment affects not only the binding of HMM to/actin but also the catalytic step in the ATPase cycle. The interaction between the 38-kDa domain of caldesmon and tropomyosin-actin is likely to play a role in the regulation of actomyosin ATPase and contraction in smooth muscle.  相似文献   

11.
Proteolytic cleavage of actin between Gly(42) and Val(43) within its DNase-I-binding loop (D-loop) abolishes the ability of Ca-G-actin to spontaneously polymerize in the presence of KCl. Here we show that such modified actin is assembled into filaments, albeit at a lower rate than unmodified actin, by myosin subfragment 1 (S1) carrying the A1 essential light chain but not by S1(A2). S1 titration of pyrene-G-actin showed a diminished affinity of cleaved actin for S1, but this could be compensated for by using S1 in excess. The most significant effect of the cleavage, revealed by measuring the fluorescence of pyrene-actin and light-scattering intensities as a function of actin concentration at saturating concentrations of S1, is strong inhibition of association of G-actin-S1 complexes into oligomers. Measurements of the fluorescence of dansyl cadaverine attached to Gln(41) indicate substantial inhibition of the initial association of G-actin-S1 into longitudinal dimers. The data provide experimental evidence for the critical role of D-loop conformation in both longitudinal and lateral, cross-strand actin-actin contact formation in the nucleation reaction. Electron microscopic analysis of the changes in filament-length distribution during polymerization of actin by S1(A1) and S1(A2) suggests that the mechanism of S1-induced polymerization is not substantially different from the nucleation-elongation scheme of spontaneous actin polymerization.  相似文献   

12.
The cyclic peptide phalloidin, one of the toxic components of Amanita phalloides prevented the drop of viscosity of F-actin solutions after the addition of 0.6 M KI and inhibited the ATP splitting of F-actin during sonic vibration. The data concerning ATP splitting are consistent with the assumption (a) that only 1 out of every 3 actin units of the filaments needs to be combined with phalloidin in order to suppress the contribution of these 3 actins to the ATPase activity of the filament and (b) that all actin units of the filaments can combine with phalloidin with a very high affinity. -halloidin did not only stabilize the actin-actin bonds in the F-actin structure but it also increased the rate of polymerization of G-actin to F-actin. The ability of F-actin to activate myosin ATPase was not affected by phalloidin. The tropomyosin-troponin complex did not prevent the stabilizing effect of phalloidin on the F-actin structure.  相似文献   

13.
Interaction of phalloidin with chemically modified actin   总被引:3,自引:0,他引:3  
Modification of Tyr-69 with tetranitromethane impairs the polymerizability of actin in accordance with the previous report [Lehrer, S. S. and Elzinga, M. (1972) Fed. Proc. 31, 502]. Phalloidin induces this chemically modified actin to form the same characteristic helical thread-like structure as normal F-actin. The filaments bind myosin heads and activate the myosin ATPase activity as effectively as normal F-actin. When a dansyl group is introduced at the same point [Chantler, P. D. and Gratzer, W. B. (1975) Eur. J. Biochem. 60, 67-72], phalloidin still induces the polymerization. The filaments bind myosin heads and activate the myosin ATPase activity. These results indicate that Tyr-69 is not directly involved in either an actin-actin binding site or the myosin binding site on actin. Moreover, the results suggest that phalloidin binds to actin monomer in the presence of salt and its binding induces a conformational change in actin which is essential for polymerization, or that actin monomer fluctuates between in unpolymerizable and polymerizable form while phalloidin binds to actin only in the polymerizable form and its binding locks the conformation which causes the irreversible polymerization of actin. Modification of Tyr-53 with 5-diazonium-(1H)tetrazole blocks actin polymerization [Bender, N., Fasold, H., Kenmoku, A., Middelhoff, G. and Volk, K. E. (1976) Eur. J. Biochem. 64, 215-218]. Phalloidin is unable to induce the polymerization of this modified actin nor does it bind to it. Phalloidin does not induce the polymerization of the trypsin-digested actin core. These results indicate that the site at which phalloidin binds is involved in polymerization and the probable conformational change involved in polymerization may be modulated through this site.  相似文献   

14.
We present a model for cooperative myosin binding to the regulated actin filament, where tropomyosins are treated as a weakly-confined continuous flexible chain covering myosin binding sites. Thermal fluctuations in chain orientation are initially required for myosin binding, leaving kinked regions under which subsequent myosins may bind without further distortion of the chain. Statistical mechanics predicts the fraction of sites with bound myosin-S1 as a function of their affinities. Published S1 binding curves to regulated filaments with different tropomyosin isoforms are fitted by varying the binding constant, chain persistence length nu (in actin monomers), and chain kink energy A from a single bound S1. With skeletal tropomyosin, we find an S1 actin-binding constant of 2.2 x 10(7) M(-1), A = 1.6 k(B)T and nu = 2.7. Similar persistence lengths are found with yeast tropomyosin. Larger values are found for tropomyosin-troponin in the presence of calcium (nu = 3.7) and tropomyosins from smooth muscle and fibroblasts (nu = 4.5). The relationship of these results to structural information and the rigid-unit model of McKillop and Geeves is discussed.  相似文献   

15.
Titin is a giant molecule that spans half a sarcomere, establishing several specific bindings with both structural and contractile myofibrillar elements. It has been demonstrated that this giant protein plays a major role in striated muscle cell passive tension and contractile filament alignment. The in vitro interaction of titin with a new partner (tropomyosin) reported here is reinforced by our recent in vitro motility study using reconstituted Ca-regulated thin filaments, myosin and a native 800-kDa titin fragment. In the presence of the tropomyosin-troponin complex, the actin filament movement onto coated S1 is improved by the titin fragment. Here, we found that two purified native titin fragments of 150 and 800 kDa, covering respectively the N1-line and the N2-line/PEVK region in the I-band and known to contain actin-binding sites, directly bind tropomyosin in the absence of actin. We have also shown that binding of the 800-kDa fragment with filamentous actin inhibited the subsequent interaction of tropomyosin with actin, as judged by cosedimentation. However, this was not the case if the complex of actin and tropomyosin was formed before the addition of the 800-kDa fragment. We thus conclude that a sequential arrangement of contacts exists between parts of the titin I-band region, tropomyosin and actin in the thin filament.  相似文献   

16.
The amino terminus of muscle tropomyosin is a major determinant for function   总被引:11,自引:0,他引:11  
The amino-terminal region of muscle tropomyosin is highly conserved among muscle and 284-residue non-muscle tropomyosins. Analysis of fusion and nonfusion striated alpha-tropomyosins and a mutant in which residues 1-9 have been deleted has shown that the amino terminus is crucial for function. The presence of 80 amino acids of a nonstructural influenza virus protein (NS1) on the amino terminus of tropomyosin allows magnesium-independent binding of tropomyosin to actin. The fusion tropomyosin inhibits the actomyosin S1 ATPase at all myosin S1 concentrations tested, indicating that the presence of the fusion peptide prevents myosin S1 from switching the actin filament from the inhibited to the potentiated state. Nonfusion tropomyosin, an unacetylated form, has no effect on the actomyosin S1 ATPase, though it regulates normally with troponin. Deletion of residues 1-9, which are believed to overlap with the carboxyl-terminal end of tropomyosin in the thin filament, results in loss of tropomyosin function. The mutant is unable to bind to actin, in the presence and absence of troponin, and it has no regulatory function. The removal of the first 9 residues of tropomyosin is much more deleterious than removal of the last 11 by carboxypeptidase digestion. We suggest that the structure of the amino-terminal region and acetylation of the initial methionine are crucial for tropomyosin function.  相似文献   

17.
Skeletal and cardiac muscle contraction are inhibited by the actin-associated complex of tropomyosin-troponin. Binding of Ca(2+) to troponin or binding of ATP-free myosin to actin reverses this inhibition. Ca(2+) and ATP-free myosin stabilize different tropomyosin-actin structural arrangements. The position of tropomyosin on actin affects the binding of ATP-free myosin to actin but does not greatly affect myosin-ATP binding. Ca(2+) and ATP-free myosin alter both the affinity of ATP-free myosin for actin and the kinetics of that binding. A parallel pathway model of regulation simulated the effects of Ca(2+) and ATP-free myosin binding on both equilibrium binding of myosin-nucleotide complexes to actin and the general features of ATPase activity. That model was recently shown to simulate the kinetics of myosin-S1 binding but the analysis was limited to a single condition because of the limited data available. We have now measured equilibrium binding and binding kinetics of myosin-S1-ADP to actin at a series of ionic strengths and free Ca(2+) concentrations. The parallel pathway model of regulation is consistent with those data. In that model the interaction between adjacent regulatory complexes fully saturated with Ca(2+) was destabilized and the inactive state of actin was stabilized at high ionic strength. These changes explain the previously observed change in binding kinetics with increasing ionic strength.  相似文献   

18.
Ali LF  Cohen JM  Tobacman LS 《Biochemistry》2010,49(51):10873-10880
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ~4-fold. Stoichiometric considerations cause this activating effect to equate to an ~4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.  相似文献   

19.
The model of myosin regulation by a continuous tropomyosin chain is generalized to a chain of tropomyosin-troponin units. Myosin binding to regulated actin is cooperative and initially inhibited by the chain as before. In the absence of calcium, myosin is further inhibited by the binding of troponin-I to actin, which through the whole of troponin pins the tropomyosin chain in a blocking position; myosin and TnI compete for actin and induce oppositely-directed chain kinks. The model predicts equilibrium binding curves for myosin-S1 and TnI as a function of their first-order affinities K(S1) and L(TI). Myosin is detached by the actin binding of TnI, but TnI is more efficiently detached by myosin when the kink size (typically nine to ten actin sites) spans the seven-site spacing between adjacent TnI molecules. An allosteric mechanism is used for coupling the detachment of TnI to calcium binding by TnC. With thermally activated TnI kinks (kink energy B approximately k(B)T), TnI also binds cooperatively to actin, producing cooperative detachment of myosin and biphasic myosin-calcium Hill plots, with Hill coefficients of 2 at high calcium and 4-6 at low calcium as observed in striated muscle. The theory also predicts the cooperative effects observed in the calcium loading of TnC.  相似文献   

20.
P Graceffa 《Biochemistry》1999,38(37):11984-11992
It has been proposed that during the activation of muscle contraction the initial binding of myosin heads to the actin thin filament contributes to switching on the thin filament and that this might involve the movement of actin-bound tropomyosin. The movement of smooth muscle tropomyosin on actin was investigated in this work by measuring the change in distance between specific residues on tropomyosin and actin by fluorescence resonance energy transfer (FRET) as a function of myosin head binding to actin. An energy transfer acceptor was attached to Cys374 of actin and a donor to the tropomyosin heterodimer at either Cys36 of the beta-chain or Cys190 of the alpha-chain. FRET changed for the donor at both positions of tropomyosin upon addition of skeletal or smooth muscle myosin heads, indicating a movement of the whole tropomyosin molecule. The changes in FRET were hyperbolic and saturated at about one head per seven actin subunits, indicating that each head cooperatively affects several tropomyosin molecules, presumably via tropomyosin's end-to-end interaction. ATP, which dissociates myosin from actin, completely reversed the changes in FRET induced by heads, whereas in the presence of ADP the effect of heads was the same as in its absence. The results indicate that myosin with and without ADP, intermediates in the myosin ATPase hydrolytic pathway, are effective regulators of tropomyosin position, which might play a role in the regulation of smooth muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号