首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon dioxide compensation point of the unicellular greenalga, Chloretla saccharophila, was determined in aqueous mediumby a gas chromatographic method. Compensation points decreasedmarkedly from 63 cm3 m–3 at an external pH of 4.0 to 3.2cm3 m–3 at pH 8.0 and were not affected by the O2 concentrationof the medium. The calculated CO2 concentration required tosupport the half-maximum photosynthetic rate of the algal cellsranged from 6.0 mmol m–3 at an external pH of 60 to 1.5mmol m–3 at pH 8.0 and these values were not affectedby O2 concentration. The Km(CO2) of nbulose-l,5-bisphosphatecarboxylase isolated from cells grown either at pH 4.0 or pH8.0 was determined to be 64 mmol m–3. These results indicatethat loss of CO2 by photorespiration does not occur in C. saccharophilacells at acid pH and the disparity between the apparent affinityfor CO2 of the intact cells and that of the carboxylase indicatesthe operation of a ‘CO2 concentrating mechanism’in this alga at acid pH. Key words: Acidophilic alga, bicarbonate transport, Chlorella saccharophila, compensation point, CO2 affinity, PH, RuBP carboxylase  相似文献   

2.
The effect of the intracellular concentration of ATP ([ATP]1)on the light-induced potential change (LPC) in tonoplast-freeChara cells was studied. The LPC was hardly affected by loweringthe [ATP]1 by about 1/10 or by raising it to about 10 timesthe normal cytoplasmic concentration (0.5–1.3 mM). Theinsensitivity of LPC to [ATP]1 excludes the possibility thatan increase in [ATP]1 due to photosynthesis may induce the LPC.However, extreme lowering of the [ATP]1 to about 1–2 µMcompletely inhibited LPC, although photosynthetic O2 evolutionwas not significantly inhibited. This fact supports the hypothesisthat light stimulates the putative H+pump fueled by ATP. Theuncoupling agents DNP and CCCP greatly depolarized the membrane,and inhibited LPC strongly, but they did not decrease [ATP]1.Photosynthetic O2 evolution was inhibited to some extent by2 µM CCCP and strongly inhibited by 0.1 mM DNP. Sincethe membrane resistance increased significantly, these chemicalsare believed to act on the membrane as an inhibitor of the electrogenicH+ pump not as an H+conductor. Introduction of 1 mM ATP intocells treated with uncouplers, to a large extent restored theirability to produce LPC although the membrane potential in darknesswas maintained at a low level. 1Present address: Niigata College of Pharmacy, 5829 Kamishinei-cho,Niigata 950-21, Japan. 2Present address: Department of Agricultural Chemistry, Collegeof Agriculture, Kyoto University, Kyoto 606, Japan. 3Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan. (Received March 9, 1979; )  相似文献   

3.
The utilization of inorganic carbon and role of the coccolithswere investigated in intact cells and protoplasts of a marineunicellular calcareous alga, Emiliania huxleyi. Protoplastswith high photosynthetic activity were obtained by artificialdecalcification with 50 mM MES-NaOH (pH5.5). (1) The kineticsof the photosynthetic evolution of O2 at various concentrationsof externally added NaHCO3 were the same for intact cells andprotoplasts, indicating that the kinetic properties with respectto dissolved inorganic carbon (DIC) were not affected by thepresence or absence of the coccoliths on the cell surface. Double-reciprocalplots and plots of the concentration of substrate divided byvelocity (s/v) against the concentration of substrate (s) werebiphasic in the case of both intact cells and protoplasts. TheCO2-utilization reaction was, therefore, considered to involvetwo processes with different values of Km and Vmax. From thekinetic analyses, Km and Vmax [µmoles O2 (ml PCV)–1h–1] were deduced to be 92 µM and 76.3 for a "low-Km"reaction and 4.1 mM and 252 for a "high-Km" reaction, respectively.(2) In short-term (40-min) experiments, time courses of thetotal uptake of 14C-DIC and the incorporation of 14C into acid-stableproducts of photosynthesis and the internal pool of DIC, determinedas acid-labile compounds, under CO2-limiting conditions (80µM) were very similar for intact cells and protoplasts.However, incorporation of 14C into CaCO3 apparently occurredmore slowly in protoplasts than in intact cells. (3) In longterm (24-h) experiments, patterns of incorporation of 14C werealmost same for intact cells and protoplasts, with the exceptionthat the amount of 14C incorporated into CaCO3 was much smallerin the former than the latter. The production of Ca14CO3 increasedduring the course of 10 h after a 4-h lag. However, after 10h the level of Ca14CCO3 started to decrease. The decrease wasaccompanied by an increase in 14C in the products of photosynthesis,suggesting that CaCO3 was reutilized for the photosyntheticfixation of CO2 and, therefore, that the coccoliths functionas sites of storage of DIC. However, the internal level of DICremained at the same level even after the supply of externalDIC has been almost completely depleted. (Received July 25, 1995; Accepted December 11, 1995)  相似文献   

4.
The human electrogenic renal Na-HCO3 cotransporter (NBCe1-A; SLC4A4) is localized to the basolateral membrane of proximal tubule cells. Mutations in the SLC4A4 gene cause an autosomal recessive proximal renal tubular acidosis (pRTA), a disease characterized by impaired ability of the proximal tubule to reabsorb HCO3 from the glomerular filtrate. Other symptoms can include mental retardation and ocular abnormalities. Recently, a novel homozygous missense mutant (R881C) of NBCe1-A was reported from a patient with a severe pRTA phenotype. The mutant protein was described as having a lower than normal activity when expressed in Xenopus oocytes, despite having normal Na+ affinity. However, without trafficking data, it is impossible to determine the molecular basis for the phenotype. In the present study, we expressed wild-type NBCe1-A (WT) and mutant NBCe1-A (R881C), tagged at the COOH terminus with enhanced green fluorescent protein (EGFP). This approach permitted semiquantification of surface expression in individual Xenopus oocytes before assay by two-electrode voltage clamp or measurements of intracellular pH. These data show that the mutation reduces the surface expression rather than the activity of the individual protein molecules. Confocal microscopy on polarized mammalian epithelial kidney cells [Madin-Darby canine kidney (MDCK)I] expressing nontagged WT or R881C demonstrates that WT is expressed at the basolateral membrane of these cells, whereas R881C is retained in the endoplasmic reticulum. In summary, the pathophysiology of pRTA caused by the R881C mutation is likely due to a deficit of NBCe1-A at the proximal tubule basolateral membrane, rather than a defect in the transport activity of individual molecules. bicarbonate; intracellular pH; acidbase; SLC4A4; Na+-HCO3 cotransporter 1  相似文献   

5.
In the aquatic liverwort Riccia fluitans the regulation of theplasma membrane H+/amino acid symport has been investigated.Cytosolic pH (pHc), membrane potential (Em) and membrane conductancehave been measured and related to transport data, (i) The releaseof [14C]amino acids is strongly stimulated by cytosolic acidification,induced by the external addition of acetic acid, a decreasein external K+, and in the change from light to dark. On average,a decrease in pHc of 0.5 to 0.6 units corresponded with a 4-foldstimulation in amino acid efflux. (ii) External pH changes havefar less effect on substrate transport than the cytosolic pHshifts of the same order. (iii) The inwardly directed positivecurrent, induced by amino acids, is severely inhibited by cytosolicacidification. (iv) Fusicoccin (FC) stimulates amino acid uptakewithout considerable change in proton motive force. (v) Whenthe proton motive force is kept constant, the uptake of aminoacids into Riccia thalli is much lower than when the pump isdeactivated. It is suggested that both the proton pump activityand cytosolic pH are the dominant factors in the regulationof the H+/amino acid symport across the plasma membrane of Ricciafluitans, and it is concluded that the proton motive force isnot a reliable quantity to predict and interpret transport kinetics. Key words: Amino acid, cytosolic pH, pH-sensitive electrode, proton motive force, regulation, Riccia fluitans  相似文献   

6.
Internodal cells of Nitellopsis were made tonoplast-free byperfusion with a medium containing EGTA. Cytoplasmic concentrationsof solutes were controlled by a second perfusion with mediaof known composition. The electrogenic pump current (Ip), whichwas calculated from electrical data obtained from cells withand without ATP, was compared with the current carried by H+(IH+) across the plasma membrane. A close correlation betweenIp and IH+ was found under various internal and external conditions.(1) Ip and IH+ depended on the internal ATP and showed Michaelis-Mententype saturation curves. For Ip, Km was 120 µM and themaximum current Vmax was 15.1 mA m–2, while for IH+, Kmwas 160 µM and Vmax was 16.6 mA m–2. (2) Ip andIH+ showed almost the same IH2+ dependence. The Mg2+-dependentIp was 19.5 mA m–2, while the Mg2+-dependent IH2+ was17.7 mA m–2. (3) IH2+ was maximal at an external pH of8 and decreased both in acidic and alkaline pH ranges. Ip wasnearly equal to IH+ in the pH range between 8 and 5. (4) IH+became maximal at an internal pH of 7.3, which is nearly thesame as the pH for maximal electrogenecity found by Mimura andTazawa (1984). All these facts support the idea proposed in our previous paper(Takeshige et al. 1985) that the electrogenic ion pump locatedin the plasma membrane of Nitellopsis is the H+ pump. 1 Dedicated to Professor Dr. Erwin Bünning on the occasionof his 80th birthday. (Received June 21, 1985; Accepted December 20, 1985)  相似文献   

7.
Effects of removal of external Ca2+ on the cytoplasmic pH (pHc)of Chara corallina have been measured with the weak acid 5,5-dimethyl-oxazolidine-2,4-dione(DMO) as a function of external pH (pH0) and of the externalconcentration of K+. Removal of Ca2+ always decreased pHc whenpH0 was below about 6.0; the decrease was about 0.2–0.4units at pH0 5.0, increasing to about 0.5 units at pH0 4.3.When pH0 was 6.0 or higher the removal of Ca2+ had little orno effect on pHc. This situation was not altered by changingthe concentration of K+, though in some experiments at pH0 5.0–5.2there was a slight decrease in pH0 (about 0.2 units) when K+was increased from 0.2 to 2.0 mol m–3, an effect apparentlyreversed when K+ was higher (5.0 or 10.0 mol m–3). Theresults suggest that H+ transport continues in the absence ofexternal Ca2+, despite previous suggestions to the contrary,and that the H+ pump does not necessarily run near thermodynamicequilibrium with its chemical driving reaction. They indicate,rather, that the H+ pump is under kinetic control and providefurther evidence for the inadequacy of present models for theoperation of the H+ pump in charophyte cells, especially inrelation to its proposed role in regulating pHc. Key words: Chara corallina, Cytoplasmic pH, Calcium  相似文献   

8.
Significant injuries to the plasma membrane were detected inEuglena gracilis cells during ozone exposure (240 µ1.liter1,delivery rate of l µmol.min–1), as assessed by measuringthe alterations of vitamin B12 and acetate uptakes and the leakageof intracellular K+ (Rb+). A rapid decrease in the uptake ofvitamin B12 and acetate was observed within 15 min of treatment,indicating that both transport systems are very sensitive toO3. On the other hand, the leakage of intracellular K+ ions,as measured by the efflux of 86Rb+ from prelabelled cells, couldonly be detected after 30 min of O3 exposure. These resultssuggest that the initial metabolic symptoms of injury is atthe level of the two transport systems examined and that thealteration of the membrane permeability to K+ ions appears asa second step in the cascade of oxidative events at the plasmamembrane level. When Euglena cells were allowed to recover underautotrophic growth conditions following O3 treatment, vitaminB12 and 86Rb+ (K+) ions uptakes returned gradually to controllevel within 5 h of the recovery period. Acetate uptake returnedto control level at a slower rate and needed 20 h for completerecovery. These results indicate that the cells were able toactively repair most of the initial oxidative damages inducedby O3. The metabolic significance of the repair mechanism(s)is discussed. (Received December 25, 1989; Accepted July 23, 1990)  相似文献   

9.
The acidophilic alga Dunaliella acidophila exhibits optimalgrowth at pH 1. We have investigated the regulation of phosphateuptake by this alga using tracer techniques and by performingintracellular phosphate measurements under different growthconditions including phosphate limitation. In batch culturewith 2·2 mol m–3 phosphate in the medium the uptakeof phosphate at micromolar phosphate concentrations followeda linear time dependence in the range of minutes and rates werein the range of 1 µmol phosphate mg–1 chl h–1,only. However, under discontinuous phosphate-limited growthconditions, tracer influx revealed a biphasic pattern at micromolarphosphate concentrations: An initial burst phase resulted ina 104-fold internal phosphate accumulation and levelled offafter about 10 s. A double reciprocal plot of the initial influxrates obtained for phosphate-limited and unlimited algae exhibitedMichaelis-Menten kinetics. Phosphate limitation caused a significantactivation of the maximum velocity of uptake, yielding Vmaxup to 1 mmol mg–1 chl h–1 as compared to valuesin the order of 50 µmol phosphate mg–1 chl h–1for the second phase (this magnitude is also representativefor non-limited batch cultures). Concomitantly the Michaelisconstant was altered from 4 mmol m–3 to 0·7 mmolm–3. The rapid uptake of phosphate was inhibited by arsenateand FCCP and was not stimulated by Na+. The pH dependence oftracer accumulation and measurements of the intracellular phosphatepool under different growth conditions indicate that at lowpH and low external phosphate concentrations the high protongradient present under these conditions is utilized for a H3PO4uptake or a H+/H2PO4 cotransport. However, when the externalphosphate concentration was increased to levels sufficientlyhigh for transport to be driven by the positive membrane potential(10 mol m–3 phosphate), the pH dependence of phosphateuptake was more complex, but could be explained by the uptakeof H3PO4 or a H+/H2PO4-cotransport at low pH and a differenttype H2PO4-transport (with unknown type of ion coupling)at high pH-values. It is suggested that this flexible couplingof phosphate transport is of essential importance for the acidresistance of Dunaliella acidophila. Key words: Acid resistance, Dunaliella acidophila, phosphate cotransport, phosphate limitation, plasma membrane, sodium  相似文献   

10.
Fluorescence spectra of the pigment system at –196°Cin membrane fragments of Anabaena variabilis and A. cylindricawere investigated. The fluorescence spectra of membrane fragments having four emissionbands at 645–655, 685, 695 and 725 nm were basically similarto those reported for intact cells of blue-green algae, thoughthe emission from phycocyanin (645–655 nm) was far strongerwith membrane fragments than with intact algal cells. Incubation of membrane fragments of A. variabilis in a dilutebuffer (10–2M, pH 7.5) caused an increase in the 645 nmfluorescence and slight decreases in the 685 and 695 nm fluorescences,but had no influence on the 725 nm fluorescence. The decreasein the 685 and 695 nm fluorescences of A. cylindrica was moremarked and had the same kinetics as the inactivation of photosystemII reaction measured by DPIP-photoreduction. When membrane fragments of A. cylindrica were incubated in thebuffer solution at room temperature or in the presence of MgCl2(10–3M) at 0°C; phycobilin aggregates, which emittedthe 655 and 685 nm fluorescence, were solubilized. This solubilizationwas not observed with membrane fragments of A. variabilis. (Received August 31, 1972; )  相似文献   

11.
The acid-tolerant green alga Chlorella saccharophila maintainedphotosynthesis and accumulated intracellular pools of inorganiccarbon over a a range of external pH from 4.0 to 7.5. This accumulationwas unaffected by treatment of cells with 10 mol m–3 acetazolamide(AZA). Cells grown at alkaline pH had extracellular carbonicanhydrase (CA), but CA activity was repressed when cells weregrown at pH 5.0. Acid-grown cells retained a high affinity forCO2, both at acid and alkaline pH, and the ability to accumulateinorganic carbon. Rates of photosynthesis of acid-grown cellsand alkaline-grown AZA-treated cells at pH 8.0 were 2.5-foldhigher than the rate of CO2 supply from the uncatalysed dehydrationof , indicating that the cells can take up as a source of substrate for photosynthesis. Isotopic disequilibrium experiments with acid-grown cells maintainingsteady-state photosynthesis at pH 7.5 demonstrate that 14C from14CO2 was taken up more rapidly than from H14. This uptake takes place against a concentration gradient. Theseresults demonstrate that C. saccharophila cells have activetransport systems for the uptake of both CO2 and and both operate without the mediation of CA. Key words: Bicarbonate transport, carbon dioxide, carbonic anhydrase, Chlorella saccharophila, inorganic carbon accumulation  相似文献   

12.
A membrane fraction from flax cells was able to incorporate[14C]galactose from UDP-D-[14C]galactose in vitro. The productsof the reaction, characterized by methylation analysis, consistedof a rß-1,4-galactan (solubilized mainly in water)and a rß-1,3- rß-1,6-galactan (solubilizedmainly in alkali). These results indicated the presence of severalgalactan synthase complexes, as did a profile of the relationshipbetween pH and activity which revealed both a maximum at pH6.5 and a shoulder at pH 8. Moreover, galactan synthase activitieswere found at two densities: 1.125 g cm–3 (Golgi membranes)and 1.07–1.08 g cm–3 (corresponding to low-densityvesicles). Partial characterization of one enzymatic system (maximaly activeat pH 8 in the presence of 5 mM MgCl2) was achieved. The Kmfor UDP-galactose and Vmax were 38 µM and 4.5 nmol h–1(mg protein)–1, respectively. (Received June 6, 1993; Accepted September 22, 1993)  相似文献   

13.
Continuous measurements of cytoplasmic pH (pHc) in Sinapis roothairs have been carried out with double-barrelled pH-micro-electrodesin order to gain information on translocation of protons acrossthe plasmalemma and cytoplasmic pH control. (i) The cytoplasmicpH of Sinapis (7–33 ? 0–12, standard conditions)changes no more than 0.1 pHc, per pHo-unit, regardless of whethercyanide is present or not. (ii) Weak acids rapidly acidify pHcand hyperpolarize, while weak bases alkalize pHc and depolarizethe cells, (iii) 1.0 mol M,3 NaCN acidifies the cytoplasm by0.4 to 0.7 pH-units, but alkalizes the vacuole. (iv) 20 mmolm–3 CCCP has no significant effect on pHc, if added atpH 9.6 or 7.2, but acidifies pHc by 1.3 units at pH 4.3. Inthe presence of CCCP, cyanide acidifies the cytoplasm, (v) Chloridetransiently acidifies pHc, while K+, Na+, and have no significant effects, (vi) Cytoplasmic buffer capacityforms a bell-shaped curve versus pHc with an optimum of about50 mol m–3 H+pHc-unit. The modes of proton re-entry and the effects of active and passiveproton transport on cellular pH control are critically discussed.It is suggested that the proton leak, consisting of H+-cotransport(e.g. H+/Cl) rather than H+-uniport, is no threat topHc. The proton export pump, although itself reacting to changesin pHc, influences pHc only to a minor extent. It is concludedthat buffer capacity and membrane transport play moderate rolesin pHc control in Sinapis, while the interlocked H+-producingand -consuming reactions of cellular metabolism are the mainregulating factors. This makes pH control in Sinapis quite differentfrom bacterial and animal cells. Key words: Cytoplasmic pH, double-barrelled pH micro-electrode, pH control, proton transport, Sinapis  相似文献   

14.
Rates of CO2 and HCC3 fixation in cells of various Chlorellaspecies in suspension were compared from the amounts of 14Cfixed during the 5 s after the injection of a solution containingonly 14CO2 or H14CO3. Results indicated that irrespectiveof the CO2 concentration during growth, Chlorella vulgaris 11h and C. miniata mainly utilized CO2, whereas C. vulgaris C-3,C. sp. K. and C. ellipsoidea took up HCO3 in additionto CO2. Cells of C. pyrenoidosa that had been grown with 1.5%CO2 (high-CO2 cells) mainly utilized CO2, whereas those grownwith air (low-CO2 cells) utilized HCO3 in addition toCO2. Cells that utilized HCO3 had carbonic anhydrase(CA) on their surfaces. The effects of Diamox and CA on the rates of CO2 and HCO3fixation are in accord with the inference that HCO3 wasutilized after conversion to CO2 via the CA located on the cellsurface. CA was found in both the soluble and insoluble fractions;the CA on the cell surface was insoluble. Independent of the modes of utilization, the apparent Km (NaHCO3)for photosynthesis was much lower in low-CO2 cells than in high-CO2ones. The fact that the CA in the soluble fraction in C. vulgarisC-3 was closely correlated with the Km(NaHCO3) indicates thatsoluble CA lowers the Km. 1 Dedicated to the late Professor Joji Ashida, one of the foundersand first president of the Japanese Society of Plant Physiologists. 4 On leave from Research and Production Laboratory of Algology,Bulgarian Academy of Sciences, Sofia. (Received September 14, 1982; Accepted March 1, 1983)  相似文献   

15.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

16.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

17.
The application of D-glucose to solutions bathing excised maize,wheat, pea and bean roots causes a rapid depolarization of theelectrical potentials between the cut tops of the roots andthe bathing solutions. Similar effects are observed for theplasma membrane potentials of maize lateral roots. A flow cell apparatus was used to demonstrate qualitative andquantitative relations between glucose induced H+ influx andthe transient decrease in current through the root. The currentchanges appear to be due entirely to H+ fluxes. Current andH+ fluxes are strongly influenced by external pH, the optimumpH for glucose induced current change being about 4.0. A similarpH optimum was found for 3-O-methyl-D-glucopyranoside but 1-O-methyl--D-glucopyranosidedid not significantly affect the trans-root potential at anypH, suggesting a significant role for the anomeric hydroxylgroup of glucose. Compounds which depolarize the trans-root potential also inhibitthe glucose induced depolarization. Surface -SH groups are probablynot involved in the glucose/H+ cotransport. Eadie-Hofstee plots relating the depolarization of trans-rootpotential to the concentrations of D-glucose or 3-O-methyl-D-glucopyranosidehave shown that Km values increase with increasing monosaccharideconcentration and are very similar to reported values of 3-O-methyl-D-glucopyranosideuptake in maize root segments. Km values for a similar rangeof D-glucose concentrations do not vary significantly with pHor with membrane depolarization due to a 10-fold increase ofKCl concentration. However, Vmax is lowered by an increase inexternal pH or a decrease in trans-root potential. It appearsthat both proton and electrical gradients can affect glucoseinduced H+ influx. The auxin herbicide, 2, 4-dichlorophenoxyethanoic acid (0.01mM) stimulates the glucose induced depolarizations in a mannerconsistent with an increase in cytoplasmic pH. This is discussedin relation to the reported action of indole-3-acetic acid andfusicoccin on maize root tissue.  相似文献   

18.
Water channels in Chara corallina   总被引:4,自引:0,他引:4  
Water relations parameters ofChara corallina inter-nodes weremeasured using the single cell pressure probe. The effect ofmercurials, which are recognized as non-specific water channelinhibitors, was examined. HgCl2 concentrations greater than5 mmol m–3 were found to inhibit hydraulic conductivity{Lp) close to 90%, whereas pCMPS was found to have no effecton Lp. The activation energy of water flow was increased significantlyfrom 21.0 kJ mol–1 to 45.6 kJ mol–1, following theapplication of HgCl2. These results are in accordance with evidencefor Hg2+sensitive water channels in the plasma membrane of charophytes(Henzler and Steudle, 1995; Tazawa et al., 1996). The metaboliceffects must, however, be considered in view of the rapid inhibitionof respiration and the depolarization of the membrane potentialwith HgCl2 concentrations lower than those found to affect Lp.It was possible to measure simultaneously water relations andmembrane PD, in order to examine the contribution of potassiumchannels to Lp. Cells were induced into a K+ permeable state.The K+ channels, assumed to be open, were subsequently blockedby various blockers. No significant difference in Lp was foundfor any of these treatments. Finally, the permeability of C.corallina membranes to ethanol was examined. HgCl2 was foundto cause a decrease in reflection coefficient, coinciding witha decrease in Lp, but there was no change in the ethanol permeabilitycoefficient. This has been interpreted in terms of both thefrictional model and composite model of non-electrolyte membranetransport. Key words: Water channels, Chara, hydraulic, conductivity, membrane transport models, reflection coefficient  相似文献   

19.
Larsson, M., Larsson, C.-M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.I. Inorganic carbon-dependent O2 evolution, nitrate utilizationand nitrogen recycling.—J. exp Bot. 36: 1373–1386 Scenedesmus obtusiusculus Chod. was grown on an inorganic mediumflushed with either air or air supplemented with 3% CO2. Inair-grown cells, O2 evolution dependent on low, but not high,HCO3 concentrations was strongly inhibited by the carbonicanhydrase inhibitor acetazolamide. Cells grown with 3% CO2 exhibitedlow rates of O2 evolution at low external inorganic C; however,after 30 min in air O2 evolution rates at low inorganic C approachedthose of air-grown cells. These results are compatible withthe view that Scenedesmus develops a ‘CO2 concentratingmechanism’ in air, with carbonic anhydrase as an importantconstituent When 3% CO2-grown cells were subjected to air-level of CO2,just a transient decline in NO3 utilization was observed,but in the presence of acetazolamide the rate of the processdecreased drastically in response to the decrease in the CO2level. In CO2-free air NO3 was taken up at high ratesbut in a deregulated manner, leading to release of NH4+. A portionof the NO3 taken up in the absence of CO2 was apparentlyassimilated Cellular nitrate reductase (NR) activity initially decreasedbut subsequently recovered after a transition from 3% CO2 toair. In the presence of acetazolamide, a persistent decreasein NR activity was observed. Cellular glutamine synthetase (GS)activity increased after transition from 3% CO2 to air, theactivity increase being unaffected by acetazolamide. NH4+ releaseto the medium in the presence of L-methionine-D, L-sulphoximine(MSO) transiently increased in 3% CO2-grown cells in responseto a transfer to air. MSO-induced NH4+ release was in fact higherin air-grown cells than in 3% CO2-grown cells. Glycollate wasinitially released after transition from 3% CO2 to air, butthere was no difference in glycollate release between MSO-treatedand untreated cells. In air-adapted Scenedesmus, N recyclingseems to be of minor importance in comparison to primary N assimilation Key words: CO2-fixation, N recycling, nitrate uptake, Scenedesmus  相似文献   

20.
Rabbit and human ClC-2GCl channels are voltagesensitive and activated by protein kinase A and low extracellular pH.The objective of the present study was to investigate the mechanism involved in acid activation of the ClC-2GCl channel and to determinewhich amino acid residues play a role in this acid activation. Channelopen probability(Po) at ±80 mV holding potentials increased fourfold in a concentration-dependent manner with extracellular H+concentration (that is, extracellular pH,pHtrans), with anapparent acidic dissociation constant of pH 4.95 ± 0.27. 1-Ethyl-3(3-dimethylaminopropyl)carbodiimide-catalyzed amidation of the channel with glycine methyl ester increasedPo threefold atpHtrans 7.4, at which the channelnormally exhibits lowPo. Withextracellular pH reduction (protonation) or amidation, increasedPo was due to asignificant increase in open time constants and a significant decreasein closed time constants of the channel gating, and this effect wasinsensitive to applied voltage. With the use of site-directedmutagenesis, the extracellular region EELE (amino acids416-419) was identified as the pH sensor and amino acid Glu-419was found to play the key or predominant role in activation of theClC-2G Cl channel byextracellular acid.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号