首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

3.
S. pombe centromeres are large and complex. We introduced a method that enables us to characterize directly centromere DNAs. Genomic DNA fragments containing cen1, cen2, or cen3, respectively, are made by cleaving NotI sites integrated on target sites and are partially restricted for long-range mapping in PFG electrophoresis. The 40 kb long cen1 consists of two inverted approximately 10 kb motifs, each containing centromeric elements dg and dh, flanked by a central region. In cen2, three motifs are arranged in inverted and direct orientations with flanking domains, making up the approximately 70 kb long repetitious region. In cen3, approximately 15 copies of dg-dh constitute a region longer than 100 kb. A set of inverted motifs with an approximately 15 kb central region might be a prototype for the S. pombe centromeres. The motifs appear to play a role in chromosome stability and segregation. Their action may be additive, and the mutual directions of dg and dh inside a motif may not be essential for function.  相似文献   

4.
Replication of centromere II of Schizosaccharomyces pombe.   总被引:2,自引:1,他引:1       下载免费PDF全文
The centromeric DNAs of Schizosaccharomyces pombe chromosomes resemble those of higher eukaryotes in being large and composed predominantly of repeated sequences. To begin a detailed analysis of the mode of replication of a complex centromere, we examined whether any sequences within S. pombe centromere II (cen2) have the ability to mediate autonomous replication. We found a high density of segments with such activity, including at least eight different regions comprising most of the repeated and unique centromeric DNA elements. A physical mapping analysis using two-dimensional gels showed that autonomous replication initiated within the S. pombe sequences in each plasmid. A two-dimensional gel analysis of replication on the chromosomes revealed that the K and L repeat elements, which occur in multiple copies at all three centromeres and comprise approximately 70% of total centromeric DNA mass in S. pombe, are both sites of replication initiation. In contrast, the unique cen2 central core, which contains multiple segments that can support autonomous replication, appears to be repressed for initiation on the chromosome. We discuss the implications of these findings for our understanding of DNA replication and centromere function.  相似文献   

5.
Centromeric DNA in the fission yeast Schizosaccharomyces pombe was isolated by chromosome walking and by field inversion gel electrophoretic fractionation of large genomic DNA restriction fragments. The centromere regions of the three chromosomes were contained on three SalI fragments (120 kilobases [kb], chromosome III; 90 kb, chromosome II; and 50 kb, chromosome I). Each fragment contained several repetitive DNA sequences, including repeat K (6.4 kb), repeat L (6.0 kb), and repeat B, that occurred only in the three centromere regions. On chromosome II, these repeats were organized into a 35-kb inverted repeat that included one copy of K and L in each arm of the repeat. Site-directed integration of a plasmid containing the yeast LEU2 gene into K repeats at each of the centromeres or integration of an intact K repeat into a chromosome arm had no effect on mitotic or meiotic centromere function. The centromeric repeat sequences were not transcribed and possessed many of the properties of constitutive heterochromatin. Thus, S. pombe is an excellent model system for studies on the role of repetitive sequence elements in centromere function.  相似文献   

6.
The DNA requirements for centromere function in fission yeast have been investigated using a minichromosome assay system. Critical elements of Schizosaccharomyces pombe centromeric DNA are portions of the centromeric central core and sequences within a 2.1-kilobase segment found on all three chromosomes as part of the K-type (K/K"/dg) centromeric repeat. The S. pombe centromeric central core contains DNA sequences that appear functionally redundant, and the inverted repeat motif that flanks the central core in all native fission yeast centromeres is not essential for centromere function in circular minichromosomes. Tandem copies of centromeric repeat K", in conjunction with the central core, exert an additive effect on centromere function, increasing minichromosome mitotic stability with each additional copy. Centromeric repeats B and L, however, and parts of the central core and its core-associated repeat are dispensable and cannot substitute for K-type sequences. Several specific protein binding sites have been identified within the centromeric K-type repeat, consistent with a recently proposed model for centromere/kinetochore function in S. pombe.  相似文献   

7.
In meiosis I sister centromeres are unified in their polarity on the spindle, and this unique behavior is known to require the function of meiosis-specific factors that set some intrinsic property of the centromeres. The fission yeast, Schizosaccharomyces pombe, possesses complex centromeres consisting of repetitive DNA elements, making it an excellent model in which to study the behavior of complex centromeres. In mitosis, during which sister centromeres mediate chromosome segregation by establishing bipolar chromosome attachments to the spindle, the central core of the S. pombe centromere chromatin has a unique irregular nucleosome pattern. Deletion of repeats flanking this core structure have no effect on mitotic chromosome segregation, but have profound effects during meiosis. While this demonstrates that the outer repeats are critical for normal meiotic sister centromere behavior, exactly how they function and how monopolarity is established remains unclear. In this study we provide the first analysis of the chromatin structure of a complex centromere during meiosis. We show that the nature and extent of the unique central core chromatin structure is maintained with no measurable expansion. This demonstrates that monopolarity of sister centromeres, and subsequent reversion to bipolarity, does not involve a global change to the centromeric chromatin structure.  相似文献   

8.
A circular minichromosome carrying functional centromere sequences (cen2) from Schizosaccharomyces pombe chromosome II behaves as a stable, independent genetic linkage group in S. pombe. The cen2 region was found to be organized into four large tandemly repeated sequence units which span over 80 kilobase pairs (kb) of untranscribed DNA. Two of these units occurred in a 31-kb inverted repeat that flanked a 7-kb central core of nonhomology. The inverted repeat region had centromere function, but neither the central core alone nor one arm of the inverted repeat was functional. Deletion of a portion of the repeated sequences that flank the central core had no effect on mitotic segregation functions or on meiotic segregation of a minichromosome to two of the four haploid progeny, but drastically impaired centromere-mediated maintenance of sister chromatid attachment in meiosis I. This requirement for centromere-specific repeated sequences could not be satisfied by introduction of random DNA sequences. These observations suggest a function for the heterochromatic repeated DNA sequences found in the centromere regions of higher eucaryotes.  相似文献   

9.
Irelan JT  Gutkin GI  Clarke L 《Genetics》2001,157(3):1191-1203
Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere.  相似文献   

10.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.  相似文献   

11.
12.
13.
Previous comparisons of centromeric DNA sequences in laboratory strains of Saccharomyces cerevisiae have revealed conserved sequences within 120 base pairs (bp) which appear to be essential for centromere function. We wanted to find out whether centromeric DNA in Saccharomyces strains with different degrees of DNA sequence divergence carry the same conserved sequences or not. Bam HI DNA fragments from two S. cerevisiae strains and one Saccharomyces uvarum strain were cloned into a centromere selection vector and tested for centromere function in a S. cerevisiae laboratory strain. Fragments having centromere function were obtained at approximately equal frequencies from all three strains. Two of the S. uvarum centromeric DNAs and two of the S. cerevisiae centromeric DNAs were sequenced and shown to carry in a 120 bp region sequences essentially like those of centromeric DNA in S. cerevisiae laboratory strains. DNA hybridization to separated chromosomal DNAs revealed that the two newly determined S. cerevisiae centromeric DNA sequences belong to chromosomes V and XIII, respectively. On leave from: Department of Cell and Tumor Biology, Roswell Park Memorial Institute, Buffalo, NY 14263, USA; On leave from: The Biological Laboratories, University of Leiden, The Netherlands  相似文献   

14.
15.
Centromeres of budding and fission yeasts   总被引:39,自引:0,他引:39  
Centromeres of the budding yeast Saccharomyces cerevisiae are structurally relatively simple, are specified by only about 125 base pairs of DNA, and contain no repeated DNA sequences. The centromere regions in the fission yeast Schizosaccharomyces pombe span many kilobase pairs of DNA and contain repeated DNA sequences that appear to be necessary for full centromere function. A portion of the repeated sequences is organized into a large inverted repeated structure in the centromere region of each S. pombe chromosome. Fission yeast provides an excellent model system for studying the role of repeated DNA sequences in centromere function.  相似文献   

16.
Human centromeres are poorly understood at both the genetic and the physical level. In this paper, we have been able to distinguish the alphoid centromeric sequences of chromosome 5 from those of chromosome 19. This result was obtained by pulsed-field gel electrophoresis after cutting genomic DNA with restriction endonucleases NcoI (chromosome 5) and BamHI (chromosome 19). We could thus define a highly polymorphic marker, representing length variations of the D5Z1 domain located at the q arm boundary of the chromosome 5 centromere. The centromeric region of chromosome 5 was then analyzed in full detail. We established an approximately 4.6-Mb physical map of the whole region with five rare-cutting enzymes by using nonchimeric YACs, two of which were shown to contain the very ends of 5cen on both sides. The p-arm side of 5cen was shown to contain an alphoid subset (D5Z12) different from those described thus far. Two genes and several putative cDNAs could be precisely located close to the centromere. Several L1 elements were shown to be present within alpha satellites at the boundary between alphoid and nonalphoid sequences on both sides of 5cen. They were used to define STSs that could serve as physical anchor points at the junction of 5cen with the p and q arms. Some STSs were placed on a radiation hybrid map. One was polymorphic and could therefore be used as a second centromeric genetic marker at the p arm boundary of 5cen. We could thus estimate recombination rates within and around the centromeric region of chromosome 5. Recombination is highly reduced within 5cen, with zero recombinants in 58 meioses being detected between the two markers located at the two extremities of the centromere. In its immediate vicinity, 5cen indeed exerts a direct negative effect on meiotic recombination within the proximal chromosomal DNA. This effect is, however, less important than expected and is polarized, as different rates are observed on both arms if one compares the 0 cM/Mb of the p proximal first 5.5 Mb and the 0.64 cM/Mb of the q proximal first 5 Mb to the sex-average 1.02 cM/Mb found throughout the entire chromosome 5. Rates then become close to the average when one goes further within the arms. Finally, most recombinants (21/22), irrespective of the arm, are of female origin, thus showing that recombination around 5cen is essentially occurring in the female lineage.  相似文献   

17.
Centromere structure and function in budding and fission yeasts   总被引:16,自引:0,他引:16  
  相似文献   

18.
Kawabe A  Nasuda S 《Genetica》2006,126(3):335-342
The chromosomal localizations of repetitive DNA clusters (ribosomal DNA and centromere satellites) were analyzed by fluorescent in situ hybridization in five strains of Arabidopsis halleri ssp. gemmifera. All five A. gemmifera strains have three chromosome pairs with 45S (5.8S-16S-26S) rDNA loci, and one pair with both 5S and 45S rDNA loci. These localizations are different from that of A. thaliana. Very unusually, there are three families of centromeric satellite DNAs (pAa, pAge1, and pAge2), and they showed polymorphism among the five strains studied. Overall, we found four different centromere satellite compositions. A plant from Fumuro was heterozygous for the chromosome specificities of centromere satellite families, possibly due to a reciprocal translocation involving centromere regions. Changes of centromeric satellite repeats appear to be rapid and frequent events in the history of A. gemmifera, and seem to occur by exchanging clusters as units.  相似文献   

19.
Nonomura K  Kurata N 《Chromosoma》2001,110(4):284-291
The large-scale primary structure of the centromeric region of rice chromosome 5 was analyzed, the first example in a cereal species. The yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) contigs aligned on the centromere of rice chromosome 5 (CEN5) covered a distance of more than 670 kb. Strong suppression of genetic recombination, one of the features of a functional centromere, occurred along the contig region. The most remarkable feature of CEN5 is the composition of the multiple repetitive elements. Oryza-specific RCS2 short tandem repeats were clustered along less than 100 kb at one end of the contig. At least 15 copies of the conserved domain of the 1.9 kb RCE1 centromeric repeats, which are similar to the long terminal repeats (LTRs) of gypsy-type retrotransposon RIRE7, were dispersed mainly in 320 kb stretches next to RCS2 tandem clusters. Many copies of the LTR-like sequences of RIRE3 and RIRE8, another gypsy-type retrotransposon, were also found throughout the contig. On the other hand, the gagpol region was less conserved in the contig. These results indicate that the rice centromere is composed of multiple repetitive sequences with the RCS2 tandem cluster probably being situated as the core of a functional centromere of some hundreds of kilobases to megabases in length.  相似文献   

20.
The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号