首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Energy intake and expenditure is a highly conserved and well-controlled system with a bias toward energy intake. In times of abundant food supply, individuals tend to overeat and in consequence to increase body weight, sometimes to the point of clinical obesity. Obesity is a disease that is not only characterized by enormous body weight but also by rising morbidity for diabetes type II and cardiovascular complications. To better understand the critical factors contributing to obesity we performed the present study in which the effects of energy expenditure and energy intake were examined with respect to body weight, localization of fat and insulin resistance in normal Wistar rats. It was found that a diet rich in fat and carbohydrates similar to "fast food" (cafeteria diet) has pronounced implication in the development of obesity, leading to significant body weight gain, fat deposition and also insulin resistance. Furthermore, an irregularly presented cafeteria diet (yoyo diet) has similar effects on body weight and fat deposition. However, these rats were not resistant to insulin, but showed an increased insulin secretion in response to glucose. When rats were fed with a specified high fat/carbohydrate diet (10% fat, 56.7% carbohydrate) ad lib or at the beginning of their activity phase they were able to detect the energy content of the food and compensate this by a lower intake. They, however, failed to compensate when food was given in the resting phase and gained more body weight as controls. Exercise, even of short duration, was able to keep rats on lower body weight and reduced fat deposition. Thus, inappropriate food intake with different levels of energy content is able to induce obesity in normal rats with additional metabolic changes that can be also observed in humans.  相似文献   

2.
Feeding adult male rats a palatable cafeteria diet stimulated energy intake and expenditure but also raised body weight and energy gains. Bilateral adrenalectomy (ADX) had little effect on stock-fed animals, but prevented the development of obesity in cafeteria-fed rats by depressing food intake and energetic efficiency. Adrenalectomy also markedly increased the thermogenic activity of brown adipose tissue, and depressed insulin levels, particularly in the cafeteria group.  相似文献   

3.
The heat production and oxygen consumption of intact virgin, pregnant, lactating and postlactating rats has been investigated both in groups fed a "cafeteria" diet as well as in controls. A third group of rats fed the cafeteria diet after parturition has been investigated. Pregnant rats fed a "cafeteria" diet increased their weight faster than controls. During lactation no increases in weight were observed, and in postlactation both "cafeteria" groups attained the same values higher than controls. The ingestion of a "cafeteria" diet resulted in higher heat production in all groups except lactating rats, which--in addition--showed higher heat outputs than all the other groups when the actual data were corrected by metabolic weight according to the surface law. The high lactation heat production (and oxygen consumption) can be a consequence of increased metabolic activity in the rat organism, devoted to milk production. It can be concluded that during lactation the dam energy output through the milk must absorb any increases in energy input due to the more densely-packed energy in the "cafeteria" diet, and this did not result in increased heat production.  相似文献   

4.
Chronic mild stress (CMS) has been often associated to the pathogenesis of many diseases including obesity. Indeed, visceral obesity has been linked to the development of metabolic syndrome features and constitutes a serious risk factor for cardiovascular diseases and diabetes. In order to study possible mechanistic relationships between stress and the onset of obesity, we developed during 11 weeks a model of high-fat dietary intake (cafeteria diet) together with a CMS regimen in male Wistar rats. During the experimental period, basal metabolism by indirect calorimetry, rectal temperature, food intake, and locomotive markers were specifically analyzed. After 77 days, animals were sacrificed and body, adiposity and plasma biochemical profiles were also examined. As expected, cafeteria diet in unstressed animals induced a significative increase in body weight, adiposity, and insulin resistance markers. Locomotive variables, specifically distance, rearing and meander, were significantly increased by CMS on the first weeks of stress. Moreover, this model of CMS in Wistar rats increased significantly energy expenditure, and apparently interplayed with the dietary treatment on the muscle weight/fat weight ratio. In summary, this chronic stress model did not affected weight gain in control and high fat fed animals, but induced an interaction concerning the metabolic muscle/fat repartitioning.  相似文献   

5.
The aim of this study was to determine the effects of cafeteria diet containing control or elevated level of vitamin A on the expression of nuclear receptors in adipose tissue. Male Wistar rats were submitted to 3 experimental diets during 8 weeks, a standard diet and two hyper-energetic, hyperlipidic "cafeteria" diets containing normal (Caf) or higher (Caf+) vitamin A level. During the experiment, body weights and energy intakes were measured. At the end of the experimental period, subcutaneous adipose tissue (Swat) and all the fat mass were removed and weighted. Nuclear receptors mRNA levels of RARalpha, RARgamma, RXRalpha, PPARgamma were measured in the Swat by a real-time semi-quantitative RT-PCR method. We observed that energy intake of Caf+ and Caf groups was significantly higher than that of the control group. Despite a higher increase of the energy intake in the Caf group compared to the Caf+ group, no significant difference was observed in the body weight gain of the Caf+ compared to the Caf group. The Caf+ and Caf diets led to a significant increase of adipose tissue in cafeteria groups as observed in the Swat depot. The mRNA levels of PPARgamma and RXRalpha were significantly increased in the Caf+ group as compared to control group, with a significant positive correlation between these two parameters. Expressions of RARalpha and RARgamma were not modified in experimental groups compared to controls. In conclusion, 8-week exposure to cafeteria diets with normal and higher levels of vitamin A led to an increase of adiposity in rats, associated, only in the group fed with the higher vitamin A level cafeteria diet, with an increase of PPARgamma and RXRalpha expressions in subcutaneous adipose tissue.  相似文献   

6.
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

7.
Thermogenesis in response to various intakes of palatable food   总被引:1,自引:0,他引:1  
Complete energy balance studies were made on groups of overfed (A) and underfed (B) Wistar rats. In experiment A one group was fed cafeteria diet ad libitum (the intake was 29% larger than the control), two other groups were fed the same diet but in restricted quantities (18 and 9% above control), and a fourth group, fed a stock diet, served as control. In experiment B, caloric intake was restricted by 12 and 31% in two groups fed cafeteria diet, and by 21 and 34% in two other groups fed stock diet. The experiments lasted 41 days and during that period the protein gain was comparable between the control and the cafeteria-29% group (643.4 +/- 33.3 vs. 578.1 +/- 25.0) but the fat gain was significantly different between the two groups (863.2 +/- 81.6 vs. 1663.2 +/- 99.8 kJ). When energy expenditure (EE) (metabolizable energy less storage added to the cost of storage) is expressed as a percentage of metabolizable energy (ME) intake no significant difference was found among the groups. The average value was congruent to 75%. This finding would not support the presence of dietary-induced thermogenesis in animals overfed on the cafeteria diet. However, since the obligatory cost associated with storing energy would not explain the higher EE of the overfed groups, it is suggested that the level of ME intake exerts continuous proportional regulatory action on EE and, as a result, energy is spared by underfeeding and it is wasted by overfeeding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Ketoconazole, an anti-glucocorticoid agent, is widely used in humans as an antifungal agent. It inhibits ergosterol synthesis and reduces cortisol levels in the treatment of Cushing's Syndrome. The aim of this work was to study the drug's preventive potential against adiposity induced by a high-fat cafeteria diet in rats. Female Wistar rats were fed on standard pelleted diet or cafeteria diet during 42 days in the presence or absence of an oral treatment with ketoconazole (24 mg/kg of body weight). The cafeteria diet increased energy intake and body weight. In addition, this high-fat diet increased body-fat weight and adipose tissue depots analyzed. Interestingly, ketoconazole was able to protect against increased total body fat and adipose depot enlargement induced after cafeteria-diet feeding. Moreover, ex vivo isoproterenol-induced lipolysis was reduced in adipocytes from cafeteria-fed animals; this decrease was reverted by treatment with ketoconazole. Thus, ketoconazole was able to protect against adiposity induced by a cafeteria diet, revealing an interaction between fat intake and glucocorticoids on adipose deposition.  相似文献   

9.

Background

Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow.

Methods

Eight week old male Sprague Dawley rats were exposed to lab chow or an energy-rich cafeteria diet (plus chow) for 16 weeks. After 5, 10 and 15 weeks, home-cage overnight feeding behavior was recorded. Eating followed by grooming then resting or sleeping was classified as a meal; whereas eating not followed by the full sequence was classified as a snack. Numbers of meals and snacks, their duration, and waiting times between feeding bouts were compared between the two conditions.

Results

Cafeteria-fed rats ate more protein, fat and carbohydrate, consistently ingesting double the energy of chow-fed rats, and were significantly heavier by week 4. Cafeteria-fed rats tended to take multiple snacks between meals and ate fewer meals than chow-fed rats. They also ate more snacks at 5 weeks, were less effective at compensating for snacking by reducing meals, and the number of snacks in the majority of the cafeteria-fed rats was positively related to terminal body weights.

Conclusions

Exposure to a palatable diet had long-term effects on feeding patterns. Rats became overweight because they initially ate more frequently and ultimately ate more of foods with higher energy density. The early increased snacking in young cafeteria-fed rats may represent the establishment of eating habits that promote weight gain.  相似文献   

10.

Background

Relapse to unhealthy eating habits is a major problem in human dietary treatment. The individuals most commonly seeking dietary treatment are overweight or obese women, yet the commonly used rat reinstatement model to study relapse to palatable food seeking during dieting primarily uses normal-weight male rats. To increase the clinical relevance of the relapse to palatable food seeking model, here we pre-expose female rats to a calorically-dense cafeteria diet in the home-cage to make them overweight prior to examining the effect of this diet history on cue-, pellet-priming- and footshock-induced reinstatement of food seeking.

Methods

Post-natal day 32 female Long-Evans rats had seven weeks of home-cage access to either chow only or daily or intermittent cafeteria diet alongside chow. Next, they were trained to self-administer normally preferred 45 mg food pellets accompanied by a tone-light cue. After extinction, all rats were tested for reinstatement induced by discrete cue, pellet-priming, and intermittent footshock under extinction conditions.

Results

Access to daily cafeteria diet and to a lesser degree access to intermittent cafeteria diet decreased food pellet self-administration compared to chow-only. Prior history of these cafeteria diets also reduced extinction responding, cue- and pellet-priming-induced reinstatement. In contrast, modest stress-induced reinstatement was only observed in rats with a history of daily cafeteria diet.

Conclusion

A history of cafeteria diet does not increase the propensity for cue- and pellet-priming-induced relapse in the rat reinstatement model but does appear to make rats more susceptible to footshock stress-induced reinstatement.  相似文献   

11.
The objective of this study was to investigate the sex-dependent regulation of skeletal muscle uncoupling protein (UCP)3 mRNA expression in response to overweight and its relationship with serum levels of free fatty acids, leptin, and insulin. Two obesity models were used: rats made obese by feeding them with a cafeteria diet for 14 wk, and postcafeteria overweight rats fed a chow diet for 10 wk after consuming the cafeteria diet for 14 wk. The effects of 24-h fasting were studied in postcafeteria rats and their age-matched controls. The cafeteria rats ate a high-fat diet and attained an excess body weight that was higher in females (+59%) than in males (+39%). A trend to higher induction of abdominal muscle UCP3 mRNA in male rats than in females after cafeteria diet was apparent (+116% increase vs. +26% increase). Postcafeteria male but not female rats still showed the tendency to have increased UCP3 mRNA levels relative to their age-matched controls. A linear regression analysis showed a significant positive correlation of the UCP3 mRNA levels with overweight and with serum levels of leptin and insulin in males, but not in females, and no correlation with serum free fatty acid levels. A subsequent correlation analysis and a multiple linear regression analysis showed that overweight was the only parameter actually related to UCP3 mRNA levels in males. Fasting-induced upregulation of muscle UCP3 mRNA levels was higher in males (5- to 7-fold) than in females (3- to 4-fold). Our results point to the existence of sex-associated differences in the control of muscle UCP3 expression in response to overweight and fasting, with an impaired induction in female rats under both conditions. The correlation of abdominal muscle UCP3 mRNA expression with overweight in males could be related to their relative resistance to gain weight after chronic overeating of a cafeteria diet, by the purported role of UCP3 in the regulation of lipid utilization.  相似文献   

12.
Female rats fed a cafeteria diet from birth developed obesity at 60 days of age and their stomach, small intestine and caecum were enlarged when compared with controls, i.e. these regions had greater food storage capacity. In spite of the enlargement, these regions had similar or reduced weight and linear density, which is seen as proof of reduced mechanical performances. Cafeteria diet produced increased glucose duodenal absorption in older animals unlike the typical reduction known in controls. Tryptophan absorption was maintained high in adulthood, compensating for the low structural nutritive properties of the cafeteria diet. The results are interpreted as an adaptation to the cafeteria diet effects and properties: the characteristic overeating of foodstuffs with greater energy density, lower mechanical requirements and lower structural nutritive value than pelleted chow.  相似文献   

13.
Rat body size and tissue composition changes from pre-weaning to three months age resulted from voluntary hyperphagia triggered by offering a cafeteria diet. The effects of a 24 hour starvation period in both cafeteria and chow fed controls were compared. Obesity develops earlier in females than in males. This difference is related to the growth patterns in both sexes. Obesity occurs at the stages of development when growth rate decreases. Cafeteria fed female rats attained a 32% greater weight than their controls, with lumbar adipose cords that were 4 times heavier and brown interscapular adipose tissue 2 times heavier than controls. The overall cafeteria fed versus chow fed rat differences in the effects of a 24 hour starvation, were minor but less liver glycogen and much more skeletal muscle lipids were mobilized in the cafeteria fed rats than in controls.  相似文献   

14.
Maternal low-protein diet during pregnancy is a risk factor for cardiovascular disease of the offspring in later life. The impact of high-protein diet during pregnancy on the cardiovascular phenotype of the offspring, however, is still unknown. We examined the influence of a high-protein diet during pregnancy and lactation on the renal, hemodynamic, and metabolic phenotype of the F1 generation. Female Wistar rats were either fed a normal protein diet (20% protein: NP) or an isocaloric high-protein diet (40% protein: HP) throughout pregnancy and lactation. At weaning, the offspring were fed with standard diet, and they were allocated according to sex and maternal diet to four groups: normal-protein male (NPm, n = 25), normal-protein female (NPf, n = 19), high-protein male (HPm, n = 24), high-protein female (HPf, n = 29). During the experiment (22 wk), the animals were characterized by repeated measurement of body weight, food intake, blood pressure, glucose tolerance, energy expenditure, and kidney function. At the end of the study period histomorphological analyses of the kidneys and weight measurement of reproductive fat pads were conducted. There were no differences in birth weight between the study groups. No influence of maternal diet on energy expenditure, glucose tolerance, and plasma lipid levels was detected. Blood pressure and glomerulosclerosis were elevated in male offspring only, whereas female offspring were characterized by an increased food efficiency, higher body weight, and increased fat pads. Our study demonstrates that a high-protein diet during pregnancy and lactation in rats programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner.  相似文献   

15.
The effect of feeding a high-energy highly palatable cafeteria diet on the liver and muscle ontogenesis of serine dehydratase, alanine transaminase, glutamine synthetase and adenylate deaminase during postnatal development of the rat has been studied. The results are in agreement with the lower amino acid utilization in cafeteria rats, both adults and during postnatal development. The feeding of excess energy coupled with high-quality protein resulted in changes in the ontogenesis of the studied enzymes that coincide with the development of protein synthesis and overall pup growth even before they had direct access to this rich diet, suggesting that cafeteria feeding already affects the amino acid metabolism of the pup through the dam's milk.  相似文献   

16.
To study the efficacy of ethanolic extract of B. monosperma bark in cafeteria and atherogenic diet fed rats and monosodium glutamate (MSG) obese rats, different doses (200, 400 and 800 mg/kg) of ethanolic extract of B. monosperma bark showed dose dependent decrease in body weight, daily food intake, glucose, lipids, internal organs' weight and fat pad weight in cafeteria and atherogenic diet fed rats and monosodium glutamate obese rats. The results suggested that B. monosperma has significant anti-obese activity.  相似文献   

17.
In this study, we assessed whether weight gain influenced the systemic lupus erythematosus (SLE) onset and/or outcome, and examined the role that reactive oxygen species (ROS) production by neutrophils played in the SLE onset and/or outcome. Female control (C57BL/6) and lupus-prone B6.MRL/lpr mice (CM and LPM, respectively) at 4 weeks old were fed standard diet or standard diet plus cafeteria diet during 12 weeks. SLE diagnosis relied on the presence of both antinuclear antibodies (ANA) and renal abnormalities. We found that the percentage of weight gain in CM and LPM increased as a function of the length of cafeteria diet feeding period, but it was not associated with energy intake. Cafeteria diet-fed CM and LPM at 8 and 12 weeks old were overweight, while CM and LPM at 16 weeks old were obese. Compared with standard diet-fed CM and LPM, cafeteria diet-fed CM and LPM exhibited elevated glucose and total cholesterol levels, and diminished triglycerides levels. Standard diet-fed 16-week-old LPM and cafeteria diet-fed 12-week-old LPM had nephritis, characterized by the increased interstitial infiltration of leukocytes. Cafeteria diet-induced weight gain rose the frequency of homogeneous and speckled ANA staining patterns in the 12- and 16-week-old LPM groups. Together, these results indicated that weight gain anticipated the SLE onset. In addition, neutrophils from cafeteria diet-fed 8-week-old LPM exhibited augmented ROS production capacity; in standard diet-fed LPM, such rise occurred only in the 16-week-old group. Thus, the neutrophil ROS production capacity was increased before the SLE onset and during its outcome. Overweight and obese CM and LPM displayed elevated levels of kidney, liver, heart, and spleen lipid peroxidation. In conclusion, cafeteria diet-induced weight gain is associated with the increased production of ANA and neutrophil-derived ROS, which may contribute to accelerate the SLE onset.  相似文献   

18.
The energy balance and hepatic fatty acid-supported respiration were studied in rats fed a control or an energy-dense diet. In addition, state 3 and 4 respiratory rates as well as ketone body production with palmitoylcarnitine as substrate were determined in isolated mitochondria. Metabolizable energy intake and energy expenditure increased in rats fed an energy-dense diet, but the gain in body weight and lipid content remained unchanged. No variation occurred in the mitochondrial palmitoylcarnitine utilization rate and ketone body production, but a significant increase in the mitochondrial content of ketone bodies and the serum levels was found in rats fed an energy-dense diet. Furthermore, we have shown a significant increase in fatty acid-stimulated respiration in hepatocytes from rats fed an energy-dense diet. The enhanced hepatic fatty acid utilization as an energy substrate found in rats fed an energy-dense diet may contribute to reduce the availability of lipids for storage, thus counteracting the development of obesity.  相似文献   

19.
Rats offered chow, lard, and 30% sucrose solution (choice) rapidly become obese. We tested metabolic disturbances in rats offered choice, chow+lard, or chow+30% sucrose solution [chow+liquid sucrose (LS)] and compared them with rats fed a composite 60% kcal fat, 7% sucrose diet [high-fat diet (HFD)], or a 10% kcal fat, 35% sucrose diet [low-fat diet (LFD)]. Choice rats had the highest energy intake, but HFD rats gained the most weight. After 23 days carcass fat was the same for choice, HFD, chow+lard, and chow+LS groups. Glucose clearance was the same for all groups during an intraperitoneal glucose tolerance test (GTT) on day 12, but fasting insulin was increased in choice, LFD fed, and chow+LS rats. By contrast, only choice and chow+LS rats were resistant to an intraperitoneal injection of 2 mg leptin/kg on day 17. In experiment 2 choice rats were insulin insensitive during an intraperitoneal GTT, but this was corrected in an oral GTT due to GLP-1 release. UCP-1 protein was increased in brown fat and inguinal white fat in choice rats, and this was associated with a significant increase in energy expenditure of choice rats during the dark period whether expenditure was expressed on a per animal or a metabolic body size basis. The increase in expenditure obviously was not great enough to prevent development of obesity. Further studies are required to determine the mechanistic basis of the rapid onset of leptin resistance in choice rats and how consumption of sucrose solution drives this process.  相似文献   

20.
Molecules with affinity for beta3-adrenoceptors are not only effective anti-obesity agents in rodent models, but may play a role in the regulation of the immune response. The aim of the current investigation was to analyse the effects of trecadrine on the immune response in diet-induced (cafeteria) obese rats. Male Wistar rats were divided into 2 groups, the control group (C, n=9) was fed with the standard pelleted chow laboratory diet, while the other group was fed with a high-fat (cafeteria) diet. Cafeteria-fed rats were divided into two new subgroups (n=9 each), which received either i.p. saline (obese, O) or trecadrine (1mg/kg/day) (obese+trecadrine, O+T) daily for 5 weeks. Lymphocyte subpopulations and the proliferative response were determined by validated procedures. The administration of trecadrine was able to prevent the onset of obesity in cafeteria-fed rats. Trecadrine-treatment to obese animals appeared to improve the number of lymphocyte subpopulations (CD4+ and CD8+) as compared to those animals only receiving the high-fat diet, being the values of the trecadrine-treated animals on the high-fat diet similar to the control rats. However, the lymphoproliferative response when stimulated with several mitogens was markedly reduced by the cafeteria intake and was further decreased by the beta3-adrenergic administration. The spleen mRNA expression level of UCP2, PPARgamma and Ob-Rb were not affected by the trecadrine treatment. Summing up, at the immune system level, trecadrine administration increased the proportion of CD4+ spleen lymphocytes, although it was not able to restore the lymphocyte proliferative response which was depressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号