首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock induces various cellular responses including inhibition of protein synthesis, production of heat shock proteins (HSPs) and induction of thermotolerance. The molecular mechanisms of the processes have not been well understood. It has been proposed that ceramide formation during heat shock mediates heat shock induced apoptosis. We examined whether C2-ceramide mimicked the cellular response to heat shock in RIF-1 cells and their thermotolerant derivative TR-RIF-1 cells. Discernible effects between heat shock and C2-ceramide treatments were observed in cellular changes such as total protein synthesis, HSP synthesis, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) activity and PARP cleavage. Heat shock immediately inhibited cellular protein synthesis, which was recovered by synthesizing HSPs first and then whole proteins later. Heat shock also activated SAPK/JNK and increased PARP cleavage in dose-dependent manner. Thermotolerant TR-RIF-1 cells responded to heat shock more insensitively than RIF-1 cells. On the other hand, C2-ceramide treatment did not accompany any changes induced by heat shock. No discernible differences between RIF-1 and TR-RIF-1 cells were observed by C2-ceramide treatment. We tried to figure out how C2-ceramide interacts with cellular membrane and found that exogenous C2-ceramide was incorporated into the outer monolayer and flipped into the inner monolayer of human erythrocytes in ATP-dependent manner. However, the rate of C2-ceramide incorporation was similar in control and thermotolerant cells. In summary, thermotolerant cells are resistant to heat shock induced apoptotic signaling but not resistant, rather sensitive to membrane disturbing C2-ceramide mediated apoptosis. These results suggest that heat shock and ceramide have different signal transduction pathways.  相似文献   

2.
Induced thermotolerance to apoptosis in a human T lymphocyte cell line.   总被引:15,自引:0,他引:15  
A brief exposure to elevated temperatures elicits, in all organisms, a transient state of increased heat resistance known as thermotolerance. The mechanism for this thermotolerant state is unknown primarily because it is not clear how mild hyperthermia leads to cell death. The realization that cell death can occur through an active process of self destruction, known as apoptosis, led us to consider whether thermotolerance provides protection against this mode of cell death. Apoptosis is a common and essential form of cell death that occurs under both physiological and pathological conditions. This mode of cell death requires the active participation of the dying cell and in this way differs mechanistically from the alternative mode of cell death, necrosis. Here we show that mild hyperthermia induces apoptosis in a human leukemic T cell line. This is evidenced by chromatin condensation, nuclear fragmentation and the cleavage of DNA into oligonucleosome size units. DNA fragmentation is a biochemical hallmark of apoptosis and requires the activation of an endogenous endonuclease. The extent of DNA fragmentation was proportional to the severity of heat stress for cells heated at 43 degrees C from 30 to 90 minutes. A brief conditioning heat treatment induced a resistance to apoptosis. This was evident as a resistance to DNA fragmentation and a reduction in the number of apoptotic cells after a heat challenge. Resistance to DNA fragmentation developed during a recovery period at 37 degrees C and was correlated with enhanced heat shock protein (hsp) synthesis. This heat-induced resistance to apoptosis suggests that thermotolerant cells have gained the capacity to prevent the onset of this pathway of self-destruction. An examination of this process in heated cells should provide new insights into the molecular basis of cellular thermotolerance.  相似文献   

3.
Exposure of cells to heat induces thermotolerance, a transient resistance to subsequent heat challenges. It has been shown that thermotolerance is correlated in time with the enhanced synthesis of heat shock proteins. In this study, the association of induced heat shock proteins with various cellular fractions was investigated and the heat-induced changes in skeletal protein composition in thermotolerant and control cells was compared. All three major heat shock proteins induced in Chinese hamster fibroblasts after a 46 degrees C, 4-min heat treatment (70, 87, and 110 kDa) were purified with the cytoplasmic fraction, whereas only the 70-kDa protein was also found in other cell fractions, including that containing the cellular skeleton. Immediately after a second heat treatment at 45 degrees C for 45 min, the 110-kDa protein from thermotolerant cells also purified extensively with the cellular skeletal fraction. In this regard, the 110-kDa protein behaved similarly to many other cellular proteins, since we observed an overall temperature-dependent increase in the total labeled protein content of the high-salt-resistant cellular skeletal fraction after heat shock. Pulse-chase studies demonstrated that this increased protein content gradually returned to normal levels after a 3-hr incubation at 37 degrees C. The alteration or recovery kinetics of the total labeled protein content of the cellular skeletal fraction after heat shock did not correlate with the dramatic increase in survival observed in thermotolerant cells. The relationship between heat shock proteins and thermotolerance, therefore, does not correlate directly with changes in the heat-induced cellular alterations leading to differences in protein fractionation.  相似文献   

4.
Chinese hamster ovary (CHO) cells became thermotolerant after treatment with either heat for 10 min at 45.5 degrees C or incubation in 100 microM sodium arsenite for 1 h at 37 degrees C. Thermotolerance was tested using heat treatment at 45 degrees C or 43 degrees C administered 6-12 h after the inducing agent. At 45 degrees C thermotolerance ratios at 10(-2) isosurvival levels were 4.2 and 3.8 for heat and sodium arsenite, respectively. Recovery from heat damage as measured by resumption of protein synthesis was more rapid in heat-induced thermotolerant cells than in either sodium arsenite-induced thermotolerant cells or nonthermotolerant cells. Differences in inhibition of protein synthesis between heat-induced thermotolerant cells and sodium arsenite-induced thermotolerant cells were also evident after test heating at 43 degrees C for 5 h. At this temperature heat-induced thermotolerant cells were protected immediately from inhibition of protein synthesis, whereas sodium arsenite-induced thermotolerant cells, while initially suppressed, gradually recovered within 24 h. Furthermore, adding cycloheximide during the thermotolerance development period greatly inhibited sodium arsenite-induced thermotolerance (SF less than 10(-6] but not heat-induced thermotolerance (SF = 1.7 X 10(-1] when tested with 43 degrees C for 5 h. Our results suggest that both the development of thermotolerance and the thermotolerant state for the two agents, while similar in terms of survival, differed significantly for several parameters associated with protein synthesis.  相似文献   

5.
Heat shock leads to transient increases in cAMP levels in HA-1-CHO cells. Such pulses are correlated temporally with the induction of heat resistance (thermotolerance) and with heat shock protein synthesis. Although the kinetics of cAMP increase after heating suggest a role in thermotolerance induction, raising cAMP levels directly using dBcAMP did not produce full thermotolerance. The resistance induced by dBcAMP may thus be either a component of or different to heat-shock triggered resistance. Cells which had been made thermotolerant by heat shock did not produce a pulse in cAMP level on heating. The cAMP producing system thus seemed desensitized to heat in thermotolerant cells.  相似文献   

6.
Exposure of cells to mild temperatures (40 °C) induces thermotolerance, which renders cells resistant to subsequent toxic insults. Thermotolerance is usually associated with accumulation of heat shock proteins. This study determines whether mild thermotolerance (40 °C, 3 h) can induce other defense proteins (e.g. antioxidants, anti-apoptosis proteins), and protect HeLa cells against apoptosis triggered by H2O2. Protein expression and enzymatic activity of MnSOD and catalase were increased in thermotolerant cells, as well as intracellular glutathione levels and γ-glutamylcysteine synthetase expression. Furthermore, levels of reactive oxygen species (ROS) were increased in thermotolerant cells, which caused mitochondrial membrane hyperpolarisation. Mild thermotolerance inhibited activation of the mitochondrial cascade of apoptosis by H2O2. This entailed inhibition of mitochondrial Bax translocation, mitochondrial membrane depolarisation, cytochrome c release, activation of caspases-9/-3 and chromatin condensation. Thermotolerance inhibited H2O2-induced caspase-independent apoptosis involving apoptosis-inducing factor, and activation of p53 and increased expression of its target protein PUMA. Thermotolerance induced at mild physiological temperatures protects cells against both caspase-dependent and caspase-independent apoptosis triggered by oxidative stress.  相似文献   

7.
Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45 degrees C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase independent. This cell death process was accompanied by strong activation of Akt, extracellular signal-regulated kinase 1 (ERK1) and ERK2, p38, and c-Jun N-terminal (JNK) kinases. Suppression of Akt or ERK1 and -2 kinases increased cell thermosensitivity. In contrast, suppression of stress kinase JNK rendered cells thermoresistant. Development of thermotolerance was not associated with Akt or ERK1 and -2 regulation, and inhibition of these kinases did not reduce acquired thermotolerance. On the other hand, acquired tolerance to severe heat shock was associated with downregulation of JNK. Using an antisense-RNA approach, we found that accumulation of the heat shock protein Hsp72 is necessary for JNK downregulation and is critical for thermotolerance. The capability of naive cells to withstand moderate heat treatment also appears to be dependent on the accumulation of Hsp72 induced by this stress. Indeed, exposure to 45 degrees C for 45 min caused only transient JNK activation and was nonlethal, while prevention of Hsp72 accumulation prolonged JNK activation and led to massive cell death. We also found that JNK activation by UV irradiation, interleukin-1, or tumor necrosis factor was suppressed in thermotolerant cells and that Hsp72 accumulation was responsible for this effect. Hsp72-mediated suppression of JNK is therefore critical for acquired thermotolerance and may play a role in tolerance to other stresses.  相似文献   

8.
Thermotolerance, the ability of cells and organisms to withstand severe elevated temperatures after brief exposure to mild elevated temperatures, has been studied in numerous laboratories. Survival thermotolerance is defined as the increase in cell or organism survival at severe elevated temperatures after a pretreatment at mild elevated temperatures. This study examines splicing thermotolerance in Drosophila melanogaster, the ability to splice pre-mRNAs made at the severe temperature (38 degrees C) after a brief pretreatment at a milder temperature (35 degrees C). It is probably one of a number of mechanisms by which cells adapt to heat shock. These experiments demonstrate that pre-mRNAs synthesized at the severe temperatures in splicing thermotolerant cells, although protected in splicing-competent complexes, are not actually processed to mature mRNAs until the cells are returned to their normal temperature. We have also studied the kinetics of acquisition and loss of splicing thermotolerance. As little as 10 min of pretreatment at 35 degrees C was sufficient to provide full splicing thermotolerance to a 30-min severe heat shock of 38 degrees C. Pretreatments of less than 10 min provide partial splicing thermotolerance for a 30-min severe heat shock. Full splicing thermotolerance activity begins to decay about 4 h after the cessation of the 35 degrees C incubation and is completely lost by 8 h after the pretreatment. The kinetics experiments of pre-mRNAs synthesized during the 38 degrees C treatment in splicing thermotolerant cells indicate that one or more splicing thermotolerance factors are synthesized during the 35 degrees C pretreatment which interact with pre-mRNA-containing complexes to keep them in a splicing-competent state. These kinetic experiments also indicate that in cells which are partially splicing thermotolerant, the pre-mRNAs synthesized early during the 38 degrees C incubation are protected, whereas those synthesized late are not. In the absence of splicing thermotolerant factors, the pre-mRNA-containing complexes leave the normal splicing pathway and are allowed to exit to the cytoplasm.  相似文献   

9.
In CHO and R1H cells thermotolerance was induced by a pre-incubation at 40 degrees C, by an acute heat shock at 43 degrees C followed by a time interval at 37 degrees C, and during continuous heating at 42 degrees C. Thermotolerance, which was tested at 43 degrees C, primarily causes an increase in D0 of the heat-response curve. The degree of maximum thermotolerance was found to be generally more pronounced in CHO than in R1H cells, but the time interval at 37 degrees C, as well as at 40 degrees C, to reach this maximum level was the same in both cell lines. CHO and R1H cells could be sensitized to 40 degrees C by a pre-treatment at 43 degrees C. When compared for the same survival rate after pre-treatment at 43 degrees C alone the degree of thermosensitization was about the same in both cell lines. In either cell line thermosensitization was found to be suppressed when cells were made thermotolerant by a previous incubation at 40 degrees C for 16 hours.  相似文献   

10.
Apoptosis is a form of cell death that can function to eliminate cells damaged by environmental stress. One stress that can compromise embryonic development is elevated temperature (i.e., heat shock). For the current studies, we hypothesized that heat shock induces apoptosis in bovine embryos in a developmentally regulated manner. Studies were performed to 1) determine whether heat shock can induce apoptosis in preimplantation embryos, 2) test whether heat-induced apoptosis is developmentally regulated, 3) evaluate whether heat shock-induced changes in caspase activity parallel patterns of apoptosis, and 4) ascertain whether exposure to a mild heat shock can protect embryos from heat-induced apoptosis. As determined by TUNEL reaction, exposure of bovine embryos > or =16 cells on Day 5 after insemination to 41 or 42 degrees C for 9 h increased the percentage of cells undergoing apoptosis. In addition, there was a duration-dependent increase in the proportion of blastomeres that were apoptotic when embryos were exposed to temperatures of 40 or 41 degrees C, which are more characteristic of temperatures experienced by heat-stressed cows. Heat shock also increased caspase activity in Day 5 embryos. However, heat shock did not induce apoptosis in 2- or 4-cell embryos, nor did it increase caspase activity in 2-cell embryos. The apoptotic response of 8- to 16-cell-stage bovine embryos to heat shock depended upon the day after insemination that heat shock occurred. When 8- to 16-cell embryos were collected on Day 3 after insemination, heat shock of 41 degrees C for 9 h did not induce apoptosis. In contrast, when 8- to 16-cell embryos were collected on Day 4 after insemination and exposed to heat shock, there was an increase in the percentage of cells undergoing apoptosis. Exposure of 8- to 16-cell embryos at Day 4 to a mild heat shock of 40 degrees C for 80 min blocked the apoptotic response to a subsequent, more-severe heat shock of 41 degrees C for 9 h. In conclusion, apoptosis is a developmentally acquired phenomenon that occurs in embryos exposed to elevated temperature, and it can be prevented by induced thermotolerance.  相似文献   

11.
Preexposure to mild temperatures such as 40°C induces thermotolerance, whereby cells resist subsequent exposure to a toxic insult. This study investigates the protective effect of mild thermotolerance (3h, 40°C) against activation of death receptor-mediated apoptosis by H(2)O(2) in HeLa cells. H(2)O(2) (5-50μM) caused rapid activation (1-3h) of the Fas death receptor pathway of apoptosis, which was evident by up-regulation of the death ligand FasL and recruitment of the adaptor protein Fas-associated death domain to the plasma membrane. This resulted in activation of caspase-8 and caspase-2, which led to activation of the cross-talk pathway involving Bid cleavage, t-Bid translocation to mitochondria, and caspase-9 activation. These changes were all diminished in thermotolerant cells. Mild thermotolerance also protected cells against cytotoxicity from H(2)O(2) as well as execution-phase events of apoptosis such as caspase-3 activation and chromatin condensation. The antioxidant polyethylene glycol-catalase abolished FasL induction and caspase-8 activation due to H(2)O(2). FasL up-regulation; activation of caspases-8, -2, -9, and -3; and chromatin condensation were decreased by the p53 inhibitor pifithrin-α, implicating p53 as an upstream factor in the activation of death receptor-mediated apoptosis by H(2)O(2). This study advances knowledge about the protective effect of adaptive responses induced by mild stresses, such as fever temperatures, against induction of apoptosis by oxidative stress.  相似文献   

12.
Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44 degrees C) or pretreatment with sodium-arsenite (1 hour at 37 degrees C, 100 microM). Inhibition of overall protein and heat shock protein (HSP) synthesis (greater than 95%) by cycloheximide (25 micrograms/ml) during tolerance development nearly completely abolished thermotolerance induced by arsenite, while significant levels of heat-induced thermotolerance were still apparent. The same dependence of protein synthesis was found for resistance against sodium-arsenite toxicity. Toxic heat, but not toxic arsenite treatments caused heat damage in the cell nucleus, measured as an increase in the protein mass of nuclei isolated from treated cells (intranuclear protein aggregation). Recovery from this intranuclear protein aggregation was observed during post-heat incubations of the cells at 37 degrees C. The rate of recovery was faster in heat-induced tolerant cells than in nontolerant cells. Arsenite-induced tolerant cells did not show an enhanced rate of recovery from the heat-induced intranuclear protein aggregation. In parallel, hyperthermic inhibition of RNA synthesis was the same in tolerant and nontolerant cells, whereas post-heat recovery was enhanced in heat-induced, but not arsenite-induced thermotolerant cells. The more rapid recovery from heat damage in the nucleus (protein aggregation and RNA synthesis) in cells made tolerant by a prior heat treatment seemed related to the ability of heat (but not arsenite) to induce HSP translocations to the nucleus.  相似文献   

13.
Heat shock protein synthesis and thermotolerance in Salmonella typhimurium   总被引:2,自引:0,他引:2  
The resistance of stationary phase Salmonella typhimurium to heating at 55 degrees C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48 degrees C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any. The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48 degrees C to 37 degrees C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

14.
In previous studies, we have demonstrated the differences in thermotolerance induced by heat and sodium arsenite (Lee et al., Radiat. Res. 121, 295-303, 1990). In this study, we investigated whether a 26-kDa protein might play an important role in evincing these differences. Chinese hamster ovary (CHO) cells treated for either 1 h with 100 microM sodium arsenite (ARS) or 10 min at 45.5 degrees C became thermotolerant to a test heat treatment at 43 degrees C administered 6 or 12 h later, respectively. After the test heating at 43 degrees C for 1.5 h, the level of 26-kDa protein in the nucleus was decreased by 92% in nonthermotolerant cells, 78% in ARS-induced thermotolerant cells, and 3% in heat-induced thermotolerant cells. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) after ARS treatment eliminated thermotolerance to 43 degrees C and delayed restoration of the 26-kDa protein in the nucleus. In contrast, CHM neither prevented the development of thermotolerance nor inhibited the restoration of the 26-kDa protein in heat-induced thermotolerant cells. However, when cells were exposed to cold (4 degrees C), immediately after initial heating, restoration of the 26-kDa protein and development of thermotolerance did not occur. These results demonstrate a good correlation between the restoration and/or the presence of this 26-kDa protein and the development of protein synthesis-independent thermotolerance.  相似文献   

15.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

16.
The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.  相似文献   

17.
When cells were heated for 15 min at 45 degrees C, they became thermotolerant to a second heat exposure at 45 degrees C. Thermotolerance developed rapidly, reached its maximum 6 hr after heat shock, and then gradually decayed. The development of thermotolerance was partially suppressed by treatment with various concentrations of quercetin (0.05-0.2 mM) at pH 7.4 after the initial heat treatment. In contrast, the drug markedly inhibited thermotolerance development at pH 6.5. Furthermore, a combination of low pH and quercetin treatment distinctively altered the expression of HSP70 gene compared with that of HSP28 or HSP90 gene. These results demonstrate a good correlation between the amount of HSP70 gene expression and development of thermotolerance.  相似文献   

18.
Cells of the yeast Saccharomyces cerevisiae are known to acquire thermotolerance in response to the stresses of starvation or heat shock. We show here through the use of cell cycle inhibitors that blockage of yeast cells in the G1, S, or G2 phases of the mitotic cell cycle is not a stress that induces thermotolerance; arrested cells remained as sensitive to thermal killing as proliferating cells. These G1- or S-phase-arrested cells were unimpaired in the acquisition of thermotolerance when subjected to a mild heat shock by incubation at 37 degrees C. One cell cycle inhibitor, o-phenanthroline, did in fact cause cells to become thermotolerant but without induction of the characteristic pattern of heat shock proteins. Thermal induction of heat shock protein synthesis was unaffected; the o-phenanthroline-treated cells could still synthesize heat shock proteins upon transfer to 37 degrees C. Use of a novel mutant conditionally defective only for the resumption of proliferation from stationary phase (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987) indicated that o-phenanthroline inhibition produces a stationary-phase arrest, a finding which is consistent with the increased thermotolerance and regulated cessation of proliferation exhibited by the inhibited cells. These findings show that the acquired thermotolerance of cells is unrelated to blockage of the mitotic cell cycle or to the rapid synthesis of the characteristic spectrum of heat shock proteins.  相似文献   

19.
Although acquired thermotolerance has been linked to the induction of heat shock proteins, the molecular mechanism(s) by which cells become resistant to heat is unknown. The present study shows a strong correlation between the survival of cells following heat shock and the rate of recovery of protein, total RNA, and rRNA synthesis. Increasing exposure of CHO cells to 45 degrees C was found to decrease survival and cause a lengthening delay in these synthetic processes. The same reciprocal correlation was seen in thermotolerant cells. As thermotolerance develops, more cells survive a heat challenge and the delay in synthesis decreases. These data argue that enhanced recovery of protein and RNA synthesis is one factor which plays a key role in thermotolerance. The involvement of rRNA synthesis was further investigated by using actinomycin D at 0.1 microgram m1(-1), a concentration at which rRNA synthesis is selectively inhibited. When the drug was present during the recovery from a challenge heat treatment, the survival of thermotolerant cells was approximately 3-fold lower than expected from the mild toxicity of the drug. As this could not be accounted for by an interaction of the drug with the response of cells to single heat treatments, it is concluded that the drug inhibits the expression of thermotolerance in cells which would otherwise express a full degree of thermotolerance. The time and concentration dependence of this effect indicates that the drug acts though inhibition of rRNA synthesis. Therefore, enhanced recovery of RNA synthesis, presumably rRNA synthesis, is identified as one of the mechanisms responsible for enhanced survival of thermotolerant cells following heat shock.  相似文献   

20.
We investigated whether or not a 50 kDa glycoprotein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. When cells were heated for 10 min at 45.5 degrees C, they became thermotolerant to a heat treatment at 45.5 degrees C administered 12 hr later. The thermotolerance ratio at 10(-3) isosurvival was 4.4. The cellular heat shock response leads to enhanced glycosylation of a 50 kDa protein. The glycosylation of proteins including a 50 kDa glycoprotein was inhibited by treatment with various concentrations of tunicamycin (0.2-2 micrograms/ml). The development of thermotolerance was not affected by treatment with tunicamycin after the initial heat treatment, although 2 micrograms/ml tunicamycin inhibited glycosylation by 95%. However, inhibiting protein synthesis with cycloheximide (10 micrograms/ml) after the initial heat treatment partially inhibited the development of thermotolerance. Nevertheless, there was no further reduction of thermotolerance development by treatment with a combination of 2 micrograms/ml tunicamycin and 10 micrograms/ml cycloheximide. These data suggest that development of thermotolerance, especially protein synthesis-independent thermotolerance, is not correlated with increased glycosylation of the 50 kDa protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号