首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of enteroviral inactivation by ozone.   总被引:7,自引:2,他引:5       下载免费PDF全文
The mechanism of enteroviral inactivation by ozone was investigated with poliovirus 1 (Mahoney) as the model virus. Ozone was observed to alter two of the four polypeptide chains present in the viral protein coat of poliovirus 1. However, the alteration of the protein coat did not significantly impair virus adsorption or alter the integrity of the virus particle. Damage to the viral RNA after exposure to ozone was demonstrated by velocity sedimentation analysis. It was concluded that the damage to the viral nucleic acid is the major cause of poliovirus 1 inactivation by ozone.  相似文献   

2.
Ozone inactivation of cell-associated viruses   总被引:1,自引:0,他引:1  
The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone dosages of 4.06 and 4.68 mg/liter, respectively, for 30 s. Unassociated viral controls were inactivated by the application of 0.081 mg of ozone per liter for 10 s. Ultrasonic treatment of cell-associated enteric viruses did not increase inactivation of the cell-associated viruses. The batch reactor with a declining ozone residual did not effect total inactivation of either cell-associated enteric virus. These cell-associated viruses were completely inactivated after exposure to ozone in a batch reactor using continuous ozonation. Inactivation of cell-associated poliovirus required a 2-min contact period with an applied ozone dosage of 6.82 mg/liter and a residual ozone concentration of 4.70 mg/liter, whereas the coxsackievirus was completely inactivated after a 5-min exposure to an applied ozone dosage of 4.81 mg/liter with an ozone residual of 2.18 mg/liter. These data indicate that viruses associated with cells or cell fragments are protected from inactivation by ozone concentrations that readily inactivate purified virus. The cell-associated viral samples used in this research contained particles that were 10 to 15 microns in size. Use of a filtration system before ozonation would remove these particles, thereby facilitating inactivation of any remaining viruses associated with cellular fragments.  相似文献   

3.
Ozone inactivation of cell-associated viruses.   总被引:1,自引:0,他引:1       下载免费PDF全文
The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone dosages of 4.06 and 4.68 mg/liter, respectively, for 30 s. Unassociated viral controls were inactivated by the application of 0.081 mg of ozone per liter for 10 s. Ultrasonic treatment of cell-associated enteric viruses did not increase inactivation of the cell-associated viruses. The batch reactor with a declining ozone residual did not effect total inactivation of either cell-associated enteric virus. These cell-associated viruses were completely inactivated after exposure to ozone in a batch reactor using continuous ozonation. Inactivation of cell-associated poliovirus required a 2-min contact period with an applied ozone dosage of 6.82 mg/liter and a residual ozone concentration of 4.70 mg/liter, whereas the coxsackievirus was completely inactivated after a 5-min exposure to an applied ozone dosage of 4.81 mg/liter with an ozone residual of 2.18 mg/liter. These data indicate that viruses associated with cells or cell fragments are protected from inactivation by ozone concentrations that readily inactivate purified virus. The cell-associated viral samples used in this research contained particles that were 10 to 15 microns in size. Use of a filtration system before ozonation would remove these particles, thereby facilitating inactivation of any remaining viruses associated with cellular fragments.  相似文献   

4.
Inactivation kinetics of poliovirus type 1 in ozone demand-free water was investigated by utilizing a fast-flow mixing apparatus. Ozonated water and a solution of ozone demand-free water containing a known quantity of poliovirus type 1 were introduced simultaneously into a mixing chamber, both at a constant rate. This mixture was then passed through a narrow tube of known length and diameter into a neutralizing solution. By altering the rate of introduction and/or tube length, different contact periods between ozone and virus could be determined with an accuracy of 0.01 s. Inactivation of the poliovirus occurred in two steps. During the first step, which lasted for 0.2 to 1.0 s, 95 to 99% of the virus was inactivated, depending on the ozone concentration (which ranged from 0.1 to 2.0 mg/liter). The second step apparently continued for several minutes; in this period the remainder of the virus was inactivated. An obvious dose-response relationship was demonstrated during the first step of the inactivation curve. The pH of the water slightly affected the viral inactivation rate, but these small differences seem to have no practical value.  相似文献   

5.
Inactivation kinetics of poliovirus type 1 in ozone demand-free water was investigated by utilizing a fast-flow mixing apparatus. Ozonated water and a solution of ozone demand-free water containing a known quantity of poliovirus type 1 were introduced simultaneously into a mixing chamber, both at a constant rate. This mixture was then passed through a narrow tube of known length and diameter into a neutralizing solution. By altering the rate of introduction and/or tube length, different contact periods between ozone and virus could be determined with an accuracy of 0.01 s. Inactivation of the poliovirus occurred in two steps. During the first step, which lasted for 0.2 to 1.0 s, 95 to 99% of the virus was inactivated, depending on the ozone concentration (which ranged from 0.1 to 2.0 mg/liter). The second step apparently continued for several minutes; in this period the remainder of the virus was inactivated. An obvious dose-response relationship was demonstrated during the first step of the inactivation curve. The pH of the water slightly affected the viral inactivation rate, but these small differences seem to have no practical value.  相似文献   

6.
Mechanism of poliovirus inactivation by bromine chloride   总被引:1,自引:0,他引:1  
The mechanism of poliovirus inactivation by BrCl was determined by exposing poliovirus to various concentrations of BrCl and correlating the loss of virus infectivity with structural changes of the virus. Concentrations of 0.3 to 5 mg of BrCl per liter resulted in 95% to total inactivation of poliovirus. However, the inactivated virus retained structural integrity, as determined by buoyant density measurements of poliovirus labeled with radioactivity. However, at concentrations of 10 to 20 mg of BrCl per liter, total inactivation of poliovirus was associated with the degradation of the structural integrity of the virus. Since infectious ribonucleic acid at similar concentrations could be recovered from untreated poliovirus and poliovirus treated with 0.3 mg of BrCl per liter, it was concluded that BrCl as HOBr or bromamines inactivates poliovirus by reacting with the protein coat of the virus. Moreover, this inactivating reaction does not result in the degradation of the structure of the virion, nor does it affect the biological activity of the internal ribonucleic acid of the virus.  相似文献   

7.
Mechanism of poliovirus inactivation by bromine chloride.   总被引:1,自引:1,他引:0       下载免费PDF全文
The mechanism of poliovirus inactivation by BrCl was determined by exposing poliovirus to various concentrations of BrCl and correlating the loss of virus infectivity with structural changes of the virus. Concentrations of 0.3 to 5 mg of BrCl per liter resulted in 95% to total inactivation of poliovirus. However, the inactivated virus retained structural integrity, as determined by buoyant density measurements of poliovirus labeled with radioactivity. However, at concentrations of 10 to 20 mg of BrCl per liter, total inactivation of poliovirus was associated with the degradation of the structural integrity of the virus. Since infectious ribonucleic acid at similar concentrations could be recovered from untreated poliovirus and poliovirus treated with 0.3 mg of BrCl per liter, it was concluded that BrCl as HOBr or bromamines inactivates poliovirus by reacting with the protein coat of the virus. Moreover, this inactivating reaction does not result in the degradation of the structure of the virion, nor does it affect the biological activity of the internal ribonucleic acid of the virus.  相似文献   

8.
The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell.  相似文献   

9.
The mechanism of enterovirus inactivation by marine bacteria was investigated using poliovirus type 1 as a model virus and with strains of Pseudomonas and Vibrio isolated from the marine environment. Treatment of virus with cell-free filtrates from late log phase bacterial cultures produced alterations in the viral capsid as shown by a reduction in efficiency of adsorption to host cells, increased sensitivity to ribonuclease, and by the release of ribonucleic acid from the treated virions. Filtration of 14C-labelled, treated virus through 25-nm filters revealed that the majority of the isotope (85-96%) passed the filters, indicating extensive capsid disruption. However, the most rapid and pronounced change observed during virus inactivation was the loss of infectivity, suggesting that enzymatic degradation is not the first event in the poliovirus inactivation process by marine bacteria.  相似文献   

10.
MS2 coliphage (ATCC 15597-B1) has been proposed by the U.S. Environmental Protection Agency as a surrogate for enteric viruses to determine the engineering requirements of chemical disinfection systems on the basis of previous experience with chlorine. The objective of this study was to determine whether MS2 coliphage was a suitable indicator for the inactivation of enteric viruses when ozone disinfection systems were used. Bench-scale experiments were conducted in 2-liter-batch shrinking reactors containing ozone demand-free 0.05 M phosphate buffer (pH 6.9) at 22 degrees C. Ozone was added as a side stream from a concentrated stock solution. It was found that an ozone residual of less than 40 micrograms/liter at the end of 20 s inactivated greater than 99.99% of MS2 coliphage in the demand-free buffer. When MS2 was compared directly with poliovirus type 3 in paired experiments, 1.6 log units more inactivation was observed with MS2 coliphage than with poliovirus type 3. It was concluded that the use of MS2 coliphage as a surrogate organism for studies of enteric virus with ozone disinfection systems overestimated the inactivation of enteric viruses. It is recommended that the regulatory agencies evaluate their recommendations for using MS2 coliphage as an indicator of enteric viruses.  相似文献   

11.
MS2 coliphage (ATCC 15597-B1) has been proposed by the U.S. Environmental Protection Agency as a surrogate for enteric viruses to determine the engineering requirements of chemical disinfection systems on the basis of previous experience with chlorine. The objective of this study was to determine whether MS2 coliphage was a suitable indicator for the inactivation of enteric viruses when ozone disinfection systems were used. Bench-scale experiments were conducted in 2-liter-batch shrinking reactors containing ozone demand-free 0.05 M phosphate buffer (pH 6.9) at 22 degrees C. Ozone was added as a side stream from a concentrated stock solution. It was found that an ozone residual of less than 40 micrograms/liter at the end of 20 s inactivated greater than 99.99% of MS2 coliphage in the demand-free buffer. When MS2 was compared directly with poliovirus type 3 in paired experiments, 1.6 log units more inactivation was observed with MS2 coliphage than with poliovirus type 3. It was concluded that the use of MS2 coliphage as a surrogate organism for studies of enteric virus with ozone disinfection systems overestimated the inactivation of enteric viruses. It is recommended that the regulatory agencies evaluate their recommendations for using MS2 coliphage as an indicator of enteric viruses.  相似文献   

12.
To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3′ noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5′ NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5′ NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.  相似文献   

13.
Treatment of HeLa cells with lymphoblastoid interferon leads to a drastic inhibition of infective poliovirus. Even relatively high concentrations of human lymphoblastoid interferon HuIFN-alpha (Ly) (400 IU/ml) do not prevent destruction of the cell monolayer after most of the cells have been infected with poliovirus. Analysis of macromolecular synthesis in a single step growth cycle of poliovirus in interferon-treated cells detected no viral protein synthesis. In spite of this inhibition of viral translation, the shut-off of host protein synthesis in interferon-treated cells is apparent when they are infected both at low and high multiplicities. Although viral RNA synthesis is inhibited considerably in cells treated with interferon, a certain amount is detected, suggesting that some viral replication takes place. Analysis of membrane permeability after poliovirus infection shows a leakage to 86Rb+ ions and modification of membrane permeability to the translation inhibitor hygromycin B at the moment when the bulk of virus protein synthesis occurs. These changes are delayed and even prevented if cells are pretreated with interferon. A situation is described in which host protein synthesis is shut-down with no major changes in membrane permeability, as studied by the two tests mentioned above. Prevention of viral gene expression by inactivation with ultraviolet light of the input virus or by treatment with cycloheximide blocks the shut-off of protein synthesis. This does not occur in the presence of 3 mM guanidine. These observations are in agreement with the idea that some poliovirus protein synthesis takes place in interferon-treated cells and this early gene expression is necessary to block cellular protein synthesis.  相似文献   

14.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

15.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

16.
A recombinant vaccinia virus was constructed that expressed poliovirus coat precursor protein P1 fused to about two-thirds of the 2A proteinase. The truncated 2A segment could be cleaved away from the P1 region by coinfecting with poliovirus type 1, 2, or 3 or with human rhinovirus 14 but not with encephalomyocarditis virus. Further cleavage of the vector-derived P1 to yield mature poliovirus capsid proteins was not observed. Attempts to isolate vaccinia virus recombinants containing portions of the poliovirus genome that encompassed the complete gene for proteinase 2A were unsuccessful, unless expression of functional 2A was abolished by insertion of a frameshift mutation. We conclude that an activity of the 2A proteinase, probably its role in translational inhibition, prevented isolation of vaccinia virus recombinants that expressed 2A.  相似文献   

17.
Inactivation rates of polioviruses 1 and 3 and coxsackieviruses A-13 and B-1 were determined in situ in the Rio Grande in southern New Mexico, using membrane dialysis chambers. Inactivation of the viruses was exponential, and the rates of inactivation were apparently affected principally by the water temperature. Stability of the viruses in river water differed, with poliovirus 1 and coxsackie B-1 being most stable. Typically 1-log reductions of infectivity at water temperatures ranging between 23 and 27 degrees C required 25 h for poliovirus 1, 19 h for poliovirus 3, and 7 h for coxsackie virus A-13. At water temperatures of 4 to 8 degrees C, the log reduction times for poliovirus 1 and coxsackievirus B-1 were 46 and 58 h, respectively. Results obtained with labeled poliovirus 1 and coxsackievirus B-1 and with infectious ribonucleic acid indicate that inactivation was due to damage to viral ribonucleic acid. Virus-inactivation rates were also affected by heat sterilization of river water, indicating the presence of a heat-labile or volatile inactivating factor. The inactivating factor in Rio Grande water was apparently present at a constant concentration over a 1-year period.  相似文献   

18.
Inactivation of polioviruses and coxsackieviruses in surface water.   总被引:10,自引:10,他引:0       下载免费PDF全文
Inactivation rates of polioviruses 1 and 3 and coxsackieviruses A-13 and B-1 were determined in situ in the Rio Grande in southern New Mexico, using membrane dialysis chambers. Inactivation of the viruses was exponential, and the rates of inactivation were apparently affected principally by the water temperature. Stability of the viruses in river water differed, with poliovirus 1 and coxsackie B-1 being most stable. Typically 1-log reductions of infectivity at water temperatures ranging between 23 and 27 degrees C required 25 h for poliovirus 1, 19 h for poliovirus 3, and 7 h for coxsackie virus A-13. At water temperatures of 4 to 8 degrees C, the log reduction times for poliovirus 1 and coxsackievirus B-1 were 46 and 58 h, respectively. Results obtained with labeled poliovirus 1 and coxsackievirus B-1 and with infectious ribonucleic acid indicate that inactivation was due to damage to viral ribonucleic acid. Virus-inactivation rates were also affected by heat sterilization of river water, indicating the presence of a heat-labile or volatile inactivating factor. The inactivating factor in Rio Grande water was apparently present at a constant concentration over a 1-year period.  相似文献   

19.
The effect of dewatering on the inactivation rates of enteric viruses in sludge was determined. For this study, water was evaporated from seeded raw sludge at 21 degrees C, and the loss of viral plaque-forming units was measured. Initial results with poliovirus showed that recoverable infectivity gradually decreased with the loss of water until the solids content reached about 65%. When the solids content was increased from 65 to 83%, a further, more dramatic decrease in virus titer of greater than three orders of magnitude was observed. This loss of infectivity was due to irreversible inactivation of poliovirus because viral particles were found to have released their RNA molecules which were extensively degraded. Viral inactivation in these experiments may have been at least partially caused by the evaporation process itself because similar effects on poliovirus particles were observed in distilled water after only partial loss of water by evaporation. Coxsackievirus and reovirus were also found to be inactivated in sludge under comparable conditions, which suggests that dewatering by evaporation may be a feasible method of inactivating all enteric viruses in sludge.  相似文献   

20.
The effect of dewatering on the inactivation rates of enteric viruses in sludge was determined. For this study, water was evaporated from seeded raw sludge at 21 degrees C, and the loss of viral plaque-forming units was measured. Initial results with poliovirus showed that recoverable infectivity gradually decreased with the loss of water until the solids content reached about 65%. When the solids content was increased from 65 to 83%, a further, more dramatic decrease in virus titer of greater than three orders of magnitude was observed. This loss of infectivity was due to irreversible inactivation of poliovirus because viral particles were found to have released their RNA molecules which were extensively degraded. Viral inactivation in these experiments may have been at least partially caused by the evaporation process itself because similar effects on poliovirus particles were observed in distilled water after only partial loss of water by evaporation. Coxsackievirus and reovirus were also found to be inactivated in sludge under comparable conditions, which suggests that dewatering by evaporation may be a feasible method of inactivating all enteric viruses in sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号