首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A distribution of extractive substances by height on the trunk and radius of the wood of the Siberian larch (Larix sibirica Ledeb.) was investigated. The maximum flavonoid content in terms of dihydroquercetin (the main flavonoid of the larch wood) was shown to be in the butt part of the tree. In the radial direction, this parameter increased from the center to periphery of the heartwood and reached the maximum value at the sapwood boundary. The maximum content of arabinogalactan (AG) was observed in the bottom and in the top of the trunk. The distribution of the extractive substances was studied in roots of the Siberian larch for the first time.  相似文献   

2.
Spruce wood that had been degraded by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) exhibiting mass losses up to 16% was investigated by transmission Fourier transform infrared (FT-IR) imaging microscopy. Here the first work on the application of FT-IR imaging microscopy and multivariate image analysis of fungal degraded wood is presented and the first report on the spatial distribution of polysaccharide degradation during incipient brown-rot of wood. Brown-rot starts to become significant in the outer cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1). This pattern was detected even in a sample with non-detectable mass loss. Most significant during incipient decay was the cleavage of glycosidic bonds, i.e. depolymerisation of wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen bonding within cellulose was reduced, while the presence of phenolic groups increased.  相似文献   

3.

Context

Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass.

Methods

Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood).

Results

Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum).

Main Conclusion

Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees.  相似文献   

4.
Fast-growing plant wood Populus ussuriensis Kom, and Micheliamacclurel wood were respectively modified by formation of wood-polymer composite to improve their decay resistance. Two functional monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, added with a few Azo-bis-isobutryonitrile as initiator, and maleic anhydride as catalyst, were first impregnated into wood cell lumen under a vacuum-pressure condition, and then in-situ polymerized into copolymers through a catalyst-thermal treatment. The decay resistances of untreated wood and wood-polymer composites were assessed by weight loss and compared by SEM observations. SEM and FTIR analysis indicated that the in-situ polymerized copolymers fully filled up wood cell lumen and also grafted onto wood cell walls, resulting in the blockage of passages for microorganisms and moisture to wood cell walls. Thus, the decay resistance of poplar wood-polymer composite and Micheliamacclurel wood-polymer composite against brown rot fungus and white rot fungus in terms of weight loss achieved 3.43–3.92% and 1.04–1.33%, improved 95.06–95.18% and 95.10–95.35% than those of untreated poplar wood and Micheliamacclurel wood, respectively; and also respectively higher than that of boron-treated wood. The SEM observations for the decayed poplar wood, Micheliamacclurel wood and their corresponding treated wood also showed the remarkable improvement of decay resistance of wood after such treatment, which effectively protected wood from degradation by fungi.  相似文献   

5.
The Pd/C-catalysed hydrogenolysis of in-situ and isolated lignins from Pinus radiata wood was investigated to gain a more complete understanding of the factors affecting yield and composition of the hydrogenolysis products. Such hydrogenolysis products could potentially be refined into aromatic feedstock chemicals providing sustainable alternatives to petroleum-derived phenols. Lignins were converted into solvent-soluble oils composed of monomeric, dimeric and oligomeric products in high yields, up to 89% of the original lignin. The main monomer products were dihydroconiferyl alcohol and 4-n-propyl guaiacol. Dimeric and oligomeric compounds constituted 75% of the hydrogenolysis oils and were mainly composed of dihydroconiferyl alcohol and 4-n-propyl guaiacol units linked by β-5, 5-5, 4-O-5 and β-1 linkages. Hydrogenolysis of steam exploded wood gave lower yields of lignin hydrogenolysis products compared to unmodified wood due to fewer reactive aryl-ether linkages in the lignin.  相似文献   

6.
Importance of boron compounds in wood preservation is increasing due to their low environmental impact, high efficacy and the fact that many other active ingredients have been removed from the market after the introduction of the Biocidal Products Directive. The most important drawback of boron is prominent leaching in wet environment. In order to improve their fixation, and performance against wood decay fungi, boric acid was combined with montan wax emulsion. Possible synergistic effects of boric acid and montan wax were determined according to modified EN 113 procedure. Norway spruce and beech wood specimens were exposed to three white rot (Trametes versicolor, Pleurotus ostreatus and Hypoxylon fragiforme) and brown rot wood decay fungi (Gloeophyllum trabeum, Antrodia vaillantii and Serpula lacrymans) for 12 weeks. Boron leaching from vacuum/pressure treated Norway spruce wood was determined according to the continuous (EN 84 and ENV 1250-2) and non-continuous (OECD and prCEN/TS 15119-1) procedures. Boron was determined with ICP mass spectrometry in collected leachates. The results of the fungicidal tests clearly showed that montan wax emulsion and boric acid act synergistically against tested wood decay fungi. Approximately 50% lower boric acid retentions are required in combination with montan wax emulsions to achieve sufficient protection against wood rotting fungi. However, it is even more important that all leaching tests performed proved that the addition of montan wax decreased boron leaching from impregnated specimens for 20% up to 50%.  相似文献   

7.
《Process Biochemistry》2007,42(5):798-804
Twenty-four brown-rot and 10 white-rot fungi were screened to evaluate their applicability for detoxification of preservative-treated wood impregnated with copper and chromium (CC) salts. Brown-rot fungi generally showed higher tolerance towards copper inhibition than white-rot fungi. Additionally, brown-rot fungi were found to accumulate considerable quantities of oxalic acid (up to 44.3 mM) in liquid medium, while white-rot fungi generally accumulated only traces of this organic acid. Oxalic acid is a strong organic acid capable of complexing a variety of heavy metals. Four Antrodia vaillantii and two Poria placenta brown-rot strains that displayed both a high copper tolerance and a high oxalic acid production were selected for further study. The brown-rot fungi effectively decayed wood containing up to 4.4% CC causing corrected mass losses of up to 24.3% in 4 weeks. Fungal treatment was also found to promote extensive leaching of chromium (up to 52.4%), but only moderate leaching of copper (15.6% or less). These results indicate the potential of solid-state fermentation with copper-tolerant fungi for the remediation of preservative-treated wood. Improving the solubility of copper will be an important challenge for future research.  相似文献   

8.
Lipids were analyzed by gas chromatography-mass spectrometry for a 7-week in vitro decay of eucalypt wood by four ligninolytic basidiomycetes. The sound wood contained up to 75 mg of lipophilic compounds per 100 g of wood. Hydrolysis of sterol esters, which represented 38% of total wood lipids, occurred during the fungal decay. The initial increase of linoleic and other free unsaturated fatty acids paralleled the decrease of sterol esters. Moreover, new lipid compounds were found at advanced stages of wood decay that were identified from their mass spectra as unsaturated dicarboxylic acids consisting of a long aliphatic chain attached to the C-3 position of itaconic acid. These dicarboxylic acids were especially abundant in the wood treated with Ceriporiopsis subvermispora (up to 24 mg per 100 g of wood) but also were produced by Phlebia radiata, Pleurotus pulmonarius, and Bjerkandera adusta. We hypothesize that three main alkylitaconic acids (tetradecylitaconic, cis-7-hexadecenylitaconic, and hexadecylitaconic acids) are synthesized by fungi in condensation reactions involving palmitic, oleic, and stearic acids. We suggest that both wood unsaturated fatty acids (present in free form or released from esters during natural decay) and unsaturated metabolites synthesized by fungi could serve as a source for peroxidizable lipids in lignin degradation by white rot basidiomycetes.  相似文献   

9.
Metallic-based wood preservatives currently face some restrictions over disposal and environmental issues; one possibility to develop new more benign systems is to study extractives in naturally durable woody plants. This study investigated the resistance of extracts from the leaf, fruit, wood, bark, seed and flower of Cerbera odollam to deterioration from fungus and termites. Antifungal assays with n-hexane, ethyl acetate, ethanol and methanol extracts were evaluated using paper discs. Termite mortality was evaluated with the methanol extract against Coptotermes gestroi. Physical and protective properties of particleboard impregnated with C. odollam extracts, including thickness swelling, internal bond strength, formaldehyde release, termite-decay and soil burial decay were investigated. Methanol wood extracts from C. odollam showed the highest activities against Trametes versicolor, Pycnoporus sanguineus, and Schizophyllum commune in the paper disc antifungal assay. Methanol flower extracts exhibited high performance in termite mortality, termite-decay and soil burial decay. Thickness swelling, internal bond strength and the formaldehyde emission of particleboard specimens treated with methanol extracts of C. odollam were up to the EN Standards.  相似文献   

10.
Humus substances synthesis was investigated in the course of birch wood decomposition by a brown-rot fungusPiptoporus betulinus. With progressing decomposition of wood by brown rot the proportion of high molecular weight humic acids is gradually increased at the expense of fulvic acids, the amount of which is proportionally lowered. The high molecular weight humus constituents are not accumulated in wood decomposed by a laccase producing white-rot fungi despite the availability of suitable phenolic substrates; the low molecular weight fraction of fulvic acids is permanently higher than the fraction of humic acids. The function of laccase in lignin degradation and in biosynthesis of humic acids is problematic.  相似文献   

11.
The effect of exogenous nitrate on the sucrose-metabolizing enzyme activities—sucrose synthase (SS) and apoplastic invertase (ApInv)—in the xylem and phloem of the silver (Betula pendula Roth var. pendula) and Karelian (B. pendula var. carelica) birches (the latter is well known for its abnormal, patterned wood) has been studied. A stable correlation between the enzyme activities and deviations in the growth and development of stem vascular tissues during cambial growth has been demonstrated. Formation of the birch wood with a common structure is associated with high SS activity. In this case, the reaction yields UDP glucose, which is utilized mainly for synthesis of the cell wall components of vessels and fiber tracheids. As for the Karelian birch, the SS activity in the xylem formation zone is decreased, which complies with a higher sucrose level in the tissue. The excess sucrose is released into the apoplast to be cleaved by ApInv. The resulting hexoses induce storage metabolism, thereby increasing the amount of storage substances and the share of storage parenchyma cells in the xylem. As a result, the Karelian birch wood acquires large inclusions in the parenchyma, which render a characteristic pattern. A change in the ratio of SS to ApInv activities underlies a great variety in the degree of wood patterning observed in Karelian birch trees. In the common silver birch, the nitrate application increases the sucrose utilization via SS pathway, which results in an increase in wood growth. In the Karelian birch xylem, nitrates lead to a decrease in both the SS (a decrease in wood growth) and ApInv (a decrease in the amount of parenchyma, i.e., normalization of the wood structure). The sucrose metabolizing in the xylem decreases on the background of an increase in its utilization in the phloem, where both enzyme activities elevate. It is assumed that the fact that the Karelian birch distribution range is limited by rich soils can be determined by a shift from intensive apoplastic sucrose utilization zone towards the phloem caused by high doses of nitrogen nutrition.  相似文献   

12.
《Journal of Asia》2022,25(3):101957
In this study, we investigated the nematicidal activities of the ethanol extracts of 49 medicinal plants against the pine wood nematode, Bursaphelenchus xylophilus, and isolated a main nematicidal constituent, (Z)-ligustilide, from Angelica tenuissima Nakai root extract. Among the 49 plant extracts, only the A. tenuissima root extract showed the strong nematicidal activity against the pine wood nematode, with a 92.3% mortality rate at a concentration of 2 mg/mL. Based on bioassay-guided isolation and gas chromatography-mass spectrometry (GC-MS) analysis, (Z)-ligustilide was identified as the active component of A. tenuissima root extract at 73.6% of the total content ratio. The LC50 value of (Z)-ligustilide against the pine wood nematode was 0.24 mg/mL. Our results indicated that (Z)-ligustilide as well as A. tenuissima root extract can be potential candidates for novel trunk injection agents against the pine wood nematode.  相似文献   

13.
The aim of this study was to investigate differences in the mechanical and fungicidal properties of three different wood species (English oak (Quercus sp.), common beech (Fagus sylvatica) and Norway spruce (Picea abies)) that had been in indoor use for several decades, compared to control specimens of freshly cut timber. The collected material was cut into smaller samples prior to further analysis. Extractive content, mechanical, fungicidal and sorption properties were determined according to standard procedures. The obtained results showed that the mechanical properties of oak wood do not deteriorate over the investigated time frame. On the other hand, the resistance of oak wood against fungi decreases over time. The reason for this is yet to be confirmed; it may be due to degradation of secondary metabolites. Similar results have been reported for spruce wood. There were no statistically significant differences in the mechanical properties of old and new spruce wood. In contrast to oak wood, there were also no significant differences in fungicidal properties, bearing in mind that spruce wood has lower durability than oak wood. Aging of beech wood resulted in a considerable decrease in the tested mechanical properties but showed no significant differences in fungicidal properties. Old beech wood specimens were moderately deteriorated by insects and fungi, which was the reason for the loss of bending and compressive strength. Our results confirm that most of the relevant properties do not deteriorate with time and that wood can be reused for a variety of other applications even after decades in service.  相似文献   

14.
In order to effectively manage habitat for fragmented populations, we need to know details of resource utilisation, and the capacity of species to colonise unoccupied habitat patches. Dispersal is vital in maintaining viable populations in increasingly fragmented environments by allowing re-colonisation of areas in which populations have gone extinct. In the UK, the endangered aspen hoverfly Hammerschmidtia ferruginea (Fallén 1817) (Diptera, Syrphidae) depends on a limited and transient breeding habitat: decaying aspen wood Populus tremula L. (Salicaceae). Conservation management for H. ferruginea involves encouraging aspen expansion across Scotland, and ensuring retention, maintenance and continuity of dead wood where H. ferruginea has been recorded and in areas that may link populations. In order to do this effectively we need to know how far H. ferruginea can disperse. By taking advantage of the tendency of adults to group on decaying aspen logs, we estimated dispersal ability through mark recapture techniques. In the first year, 1,066 flies were marked as they emerged from aspen logs and 78 were re-sighted at artificially-placed decaying aspen logs up to 4 km from the release site. In the second year, of 1,157 individually marked flies, 112 were re-sighted and one was observed 5 km from the release site. Territorial behaviour was recorded at all (19) decaying aspen log locations. In total, 72 males were recorded defending territories, which overlapped with 68 % of recorded female oviposition sites. Among males only, wing length was positively associated with dispersal. While these results show H. ferruginea is capable of locating decaying logs up to 5 km away, most dispersing individuals (68 %) were recorded at 1 km, which should be taken into account in developing management protocols. If enough dead wood is available it should be distributed within a radius of 1–2 km, and where possible, as stepping-stones linking up aspen woodlands. We discuss the implications of our findings for the natural history of this species, and make recommendations for its conservation management.  相似文献   

15.
Biologically active substances and antioxidant activity of extracts from leaves and inflorescences of nine representatives of the genus Spiraea L. growing on the territory of the Far East of Russia were investigated. Widespread species of the genus Spiraea (S. salicifolia, S. media var. media, S. betulifolia and S. ussuriensis subsp. ussuriensis) have the highest levels of biologically active substances. The inflorescences of spiraeas there contain more flavonols (up to 3.9%), oxycinnamic acids (up to 1.2%), catechins (up to 5.7%) and saponins (up to 5.1%) compared to their leaves, and there are more tannins (up to 11.6%) in the leaves. Among the Far Eastern representatives of the genus Spiraea, S. betulifolia and S. beauverdiana (section Calospira), S. humilis and S. salicifolia (section Spiraria), S. pubescens and S. media var. media (section Chamaedryon) are promising antioxidants. Plants of the genus Spiraea probably contain water-soluble antioxidant compounds of phenolic type, because the antioxidant activity of aqueous extracts in the leaves and inflorescences of spiraeas is higher (0.16–2.79 mg/g) than that of water-alcoholic compounds (0.06–2.54 mg/g). The antioxidant activity in the leaves of spiraeas is generally higher than that in the inflorescence. A reliable positive correlation is observed between the antioxidant activity of aqueous extracts from the organs of spiraeas and a content of oxycinnamic acids.  相似文献   

16.
In darkness, dormancy was imposed on seeds of lettuce (Lactuca sativa L. cv. Grand rapids) by high temperature and on seeds of oilseed rape (Brassica napus L. cv. Apex) by osmotic stress using polyethylene glycol (PEG 8000). In both cases, dormancy was broken by incubating the seeds in aqueous extracts of combustion products from Salix viminalis wood chips or Themeda triandra leaves. Dormancy of rapeseed, but not lettuce, was also broken by a solution of smoke from burnt straw of Triticum aestivum. The greatest stimulation from burnt vegetation was achieved with an aqueous extract of pyrolysed willow wood chips, which had been subjected to temperatures of up to 800 °C during combustion in a down-draught gasifier. This suggests that some biologically active substances obtained from combustion of plant tissues are highly heat-stable.  相似文献   

17.
18.
For biological extraction of heavy metals from chromated copper arsenate (CCA) treated wood, different bacteria were investigated. The extraction rates of heavy metals using Lactobacillusbulgaricus and Streptococcusthermophilus were highest. The chemical extraction rates were depended on the amounts of pyruvic acid and lactic acid. Especially, the extraction rates using mixed pyruvic acid and lactic acid were increased compared to those of sole one. They were also enhanced in the mixed culture of L. bulgaricus and S. thermophilus. To improve the extraction of CCA, a two-step processing procedure with the mixed culture of L. bulgaricus and S. thermophilus was conducted. A maximum of 93% of copper, 86.5% of chromium, and 97.8% of arsenic were extracted after 4 days. These results suggest that a two-step process with the mixed culture of L. bulgaricus and S. thermophilus is most effective to extract heavy metals from CCA treated wood.  相似文献   

19.
The development of biopesticides against ectoparasites must take into account the effect that an animal host’s secretions and host associated micro-organisms may have on the viability of the applied agent. In this study, the effects of secretions washed from the pelt of sheep on the viability and growth of the fungal pathogen Beauveria bassiana, were assessed. The fungal isolate had been obtained from the parasitic sheep scab mite Psoroptes ovis. It was added to 0.05% Tween 80 in which sheep fleece had been washed up to six times, to ascertain whether successive washings had any effect on the viability of conidia over 6 days. The effects of sterile and non-sterile washings on viability and growth were also investigated. Results indicated that substances in the sheep fleece may cause a significant reduction in the viability of conidia. Viability was linked to the number of times the sheep pelt had been washed in the Tween, with conidia incubated in the first wash from the sheep pelt showing a significantly greater decrease in viability compared to those incubated in the sixth wash. Viability was not linked to the sterility of the washes, although there was a significant difference between length of germ tube growth from viable conidia in sterile and non-sterile washings.  相似文献   

20.
The vessel-simulating flow-through cell (vFTC) has been used to examine release and distribution from drug-eluting stents in an in vitro model adapted to the stent placement in vivo. The aim of this study was to examine the effect of the admixture of different hydrophobic additives to the vessel wall simulating hydrogel compartment on release and distribution from model substance-coated stents. Four alginate-based gel formulations containing reversed-phase column microparticles LiChroprep® RP-18 or medium-chain triglycerides in form of preprocessed oil-in-water emulsions Lipofundin® MCT in different concentrations were successfully developed. Alginate and modified gels were characterized regarding the distribution coefficient for the fluorescent model substances, fluorescein and triamterene, and release as well as distribution of model substances from coated stents were investigated in the vFTC. Distribution coefficients for the hydrophobic model substance triamterene and the hydrophobized gel formulations were up to four times higher than for the reference gel. However, comparison of the obtained release profiles yielded no major differences in dissolution and distribution behavior for both fluorescent model substances (fluorescein, triamterene). Comparison of the test results with mathematically modeled data acquired using finite element methods demonstrated a good agreement between modeled data and experimental results indicating that gel hydrophobicity will only influence release in cases of fast releasing stent coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号