首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The combined effect of Vesicular Arbuscular Mycorrhizae (VAM) and Rhizobium on the cold season legumes, lentil and faba bean, as well as on summer legume, soybean, were studied in soils with low indeginous VA mycorrhizal spores. Inoculation of the plant with VA mycorrhizal fungi increased the level of mycorrhizal root infection of lentil, faba bean and soybean. The inoculation with Rhizobium had no significant effect on VA mycorrhizal infection percent, but VA mycorrhizal inoculation increased nodulation of the three legumes. The inoculation with Rhizobium alone significantly increased plant dry weight and N content of lentil and faba bean as well as seed yield of soybean. VA mycorrhizal inoculation also significantly increased plant dry weight and phosphorus content of the plants as did fertilization with superphosphate. Rock phosphate fertilization, however, had no significant effect on plant growth or phosphorus uptake. The addition of rock phosphate in combination with VA mycorrhizal inoculation significantly increased plant dry weight and P uptake of the plants. The dual inoculation with both rhizobia and mycorrhizae induced more significant increases in plant dry weight, N and P content of lentil and faba bean as well as seed yield of soybean than inoculation with either VA mycorrhizae or Rhizobium alone.  相似文献   

2.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:56,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

3.
Stimulation of vesicular-arbuscular (VA) mycorrhizal fungi may secure the early establishment of symbiosis and benefit the host plant at an earlier stage of development. The application of Bacillus mycoides resulted in particular in the acceleration of early VA mycorrhiza formation. An increase in vigour of the symbiosis could be measured later in terms of increased sporulation of the mycorrhizal fungi after shoot removal. Natural sporulation during later mycorrhizal development was affected by combination of bacteria and just one mycorrhizal isolate. The stimulation of mycorrhizal development was shown to be non-specific with regard to host plant and the isolate of the VAM fungus. However, the effect could not be achieved in all combinations of soil types and host plants. Application of the systemic fungicides triadimefon and pyrazophos promoted VAM formation. Combinations of fungicide and bacterial treatments were not synergistic.  相似文献   

4.
对4 种移栽到温室中的蕨类植物根际土壤中的VA 菌根真菌孢子种群组成和季相变化进行了研究, 结果发现, VA菌根真菌孢子的产生具有明显的宿主依赖性和季相变化。在相同气候条件下, 不同植物根际土壤中的VA菌根真菌种群组成不同; 同种VA 菌根真菌在不同宿主植物根际土壤中, 孢子的丰富度有很大的差异。本文对影响VA菌根真菌孢子种群组成和季相变化的因素进行了讨论。  相似文献   

5.
Three pot experiments were conducted to test the hypothesis that the growth ofAcacia spp. in stockpiled soil from two mineral sand mines, could be increased by the addition of phosphorus (P) or inoculation with VA mycorrhizal fungi. In soils from North Stradbroke Island, the dry weight of shoots ofAcacia concurrens was increased by P and by VA mycorrhizal fungi in tailings sand, while in less adsorptive topsoil dry weight was only increased at low levels of applied P. WhenA. concurrens was grown in a layer of topsoil placed over tailings sand, shoot dry weight increased, in response to inoculation with VA mycorrhizal fungi banded between the soil layers.In topsoil from Eneabba, the dry weight of shoots at low rates of applied P was increased by up to 4 times by inoculation with VA mycorrhizal fungi. The response to inoculation in both experiments was due to increases in the uptake of P by the plants.Species of VA mycorrhizal fungi differed in their ability to increase plant growth. However, in soils from both sites, the same fungal species were effective.  相似文献   

6.
VA菌根真菌与植物相互选择性的研究   总被引:13,自引:3,他引:13  
采用土培试验了灭菌条件下同一菌种对不同植物和不同菌咱对同一植物的接种效应。试验结果表明,供试植物都能与VA菌根真菌形成共生体系,接种VA菌根真菌促进了植物的生长,植株干物质量显著是否 同VA菌根真菌与宿主植物形成共生体的能力及对植物的接种疚差异明显,由此可见,选择优势菌咱和宿主植物组合,对于VA菌根真菌的广泛应用及农业生产具有重要的实践作用。  相似文献   

7.
Even though the positive interactions between arbuscular mycorrhizal (AM) fungi and rhizobial bacteria in legume plants are well documented, their interactions under drought conditions could be negative in some species. In the present study, we examined six different strains of Rhizobiun in combination with two AM fungi (Glomus mosseae and Glomus intraradices) on the responses of Phaseolus vulgaris plants to moderate drought conditions. Moreover, to discriminate between direct competition for carbon resources from direct inhibition processes, a non-legume plant (Zea mays) was also used. Although all inoculants (single or double) increased P. vulgaris growth, only one double combination further increased total or pod dry weights. On the other hand, three double combinations decreased pod dry weight compared to plants inoculated with a single AM fungus. In Z. mays plants, one double inoculation treatment further increased shoot dry weight, but another double inoculation treatment decreased root dry weight in plants inoculated with G. mosseae. In addition, in both plant species, a higher percentage of decrease in AM root colonization by some rhizobial strains was observed. This was most likely caused by a direct inhibition of AM fungal growth by the rhizobial strains and also depended on the host plant involved. Further research is needed to elucidate on the mechanisms behind this inhibition.  相似文献   

8.
甘肃盐碱土植物VA菌根真菌侵染研究   总被引:3,自引:2,他引:1  
对甘肃盐碱土中植物的VA菌根真菌共生状况进行研究,结果表明:在10科17种植物中,除碱蓬(Suaeda glauca Beg.)外均被菌根真菌侵染,占94.1%;盐碱土中孢子密度较高,表明甘肃盐碱土生态系统中植物对菌根真菌具有较高的依赖性,菌根真菌在盐碱土中产孢能力较强;所调查植物的VA菌根结构类型Arum型占68.75%,Pris型占31.25%;菌根结构类型与宿主植物类型有关,禾本科(Poaceae)和鸢尾科(Iridaceae)植物为P型菌根,百合科(Liliaceae)、胡颓子科(Elaeagnaceae)等其它科植物均为A型菌根;土壤类型影响了宿主植物的菌根侵染率和根际土的孢子密度,相同宿主植物在不同类型土壤中的菌根侵染率和孢子密度具有很大的差异.  相似文献   

9.
Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.  相似文献   

10.
Medicago arborea can be used for re-vegetationpurposes under semiarid conditions. These woody legumes have the ability toforman association with arbuscular mycorrhizal (AM) fungi and rhizobial bacteria,which can be maximised by microorganisms producing certain stimulatingmetabolites acting as plant growth promoting rhizobacteria (PGPR). The effectsof single and combined inoculations using microorganisms with different andinteractive metabolic capacities, namely three Glomusspecies, two Rhizobium meliloti strains (a wild type, WTand its genetically modified derivative GM) and a plant growth promotingrhizobacterium, (PGPR), were evaluated. All three inoculated AM fungi affectedMedicago growth in different ways. Differences weremaintained when soil was co-inoculated with each of the rhizobial strains (WTorGM) and the PGPR. Mycorrhizal fungi were effective in all cases, but the PGPRonly affected plant growth specific microbial situations. PGPR increased growthof G. mosseae-colonised plants associated withRhizobium WT strain by 36% and those infected byG. deserticola when associated with the rhizobial GMstrainby 40%. The most efficient microbial treatments involved mycorrhizalinoculation, which was an indication of the AM dependency of this plantspecies.Moreover, PGPR inoculation was only effective when associated with specificmycorrhizal endophytes (G. mosseae plus WT andG.deserticola plus GM rhizobial strain). The reduced root/shoot (R/S)ratio resulting from PGPR inoculation, was an indication of more effective rootfunction in treated plants. AM colonisation and nodule formation wereunaffectedby the type of AM fungus or bacteria (rhizobial strain and/or PGPR). AM fromnatural soil were less infective and effective than those from the collection.The results supported the existence of selective microbial interactionsaffecting plant performance. The indigenous AM fungi appeared to be ineffectiveand M. arborea behaved as though it was highly dependentonAM colonisation, which implied that it must have a mycorrhizal association toreach maximum growth in the stressed conditions tested. Optimum growth ofmycorrhizal M. arborea plants was associated with specificmicrobial groups, accounting for a 355% increase in growth overnodulatedcontrol plants. The beneficial effect of PGPR in increasing the growth of awoody legume, such as M. arborea under stress, was onlyobserved with co-inoculation of specific AM endophytes. As a result of theinteraction, only shoot biomass was enhanced, but not as a consequence ofenhancing of the colonising abilities of the endophytes. The growthstimulation,occurring as a consequence of selected microbial groups, may be critical anddecisive for the successful establishment of plants under Mediterraneanclimaticand soil conditions.  相似文献   

11.
The Medicago truncatula DMI3 gene encodes a calcium- and calmodulin-dependent protein kinase (CCaMK) that is necessary for the establishment of both rhizobial and mycorrhizal symbioses. The two symbiotic signaling pathways diverge downstream of DMI3; therefore, it has been proposed that legumes have evolved a particular form of CCaMK, acting like a switch able both to discriminate between rhizobial and mycorrhizal calcium signatures and to trigger the appropriate downstream signaling pathway. To test this hypothesis, we examined whether a CCaMK gene from a nonlegume species was able to restore the rhizobial symbiotic properties of a M. truncatula dmi3 mutant. Our results show that a CCaMK gene from rice can restore nodule formation, indicating that CCaMKs from nonlegumes can interpret the calcium signature elicited by rhizobial Nod factors and activate the appropriate downstream target. The nodules did not contain bacteria, which suggests that DMI3 is also involved in the control of the infection process.  相似文献   

12.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

13.
Experiments on asparagus (Asparagus of)icinalis L.) inoculated with VA mycorrhizal fungi were conducted under two fluvo-aquatic phosphorus deficient soils. This study was to examine the growth response of VA mycorrhizae and fertilizer effects on the growth of mycorrhizal and non-mycorrhizal asparagus seedlings in pots and under field conditions. Inoculation with VA mycorrhizal fungi significantly increased mycorrhizal infection and enhanced seedling growth. In treatments of fertilization by different batches of NPK or by different amount of application it was shown that phosphorus was most favourable to VAM activity. Both the prevalance of mycorrhizal infection and the dry weight of seedlings in treatment with NPK in 1:0:1 was similar to that in 1:1:1 and 1:2:1 after inoculation. Further more the prevalance of infection, plant growth and P content in the treatment of 1/2 an amount of NPK in 1:1:1 were even higer than those in full amount of NPK and in non-fertilization. It is indicated that phosphorus uptake and plant growth benefit greatly by mycorrhizal inoculation. Mycorrhizal plant requires only about half as much phosphorus to achieve maximum growth as the uninoculated plants.  相似文献   

14.
Disturbance of natural plant communities is the first visible indication of a desertification process, but damage to physical, chemical, and biological soil properties is known to occur simultaneously. Such soil degradation limits reestablishment of the natural plant cover. In particular, desertification causes disturbance of plant-microbe symbioses which are a critical ecological factor in helping further plant growth in degraded ecosystems. Here we demonstrate, in two long-term experiments in a desertified Mediterranean ecosystem, that inoculation with indigenous arbuscular mycorrhizal fungi and with rhizobial nitrogen-fixing bacteria not only enhanced the establishment of key plant species but also increased soil fertility and quality. The dual symbiosis increased the soil nitrogen (N) content, organic matter, and hydrostable soil aggregates and enhanced N transfer from N-fixing to nonfixing species associated within the natural succession. We conclude that the introduction of target indigenous species of plants associated with a managed community of microbial symbionts is a successful biotechnological tool to aid the recovery of desertified ecosystems.  相似文献   

15.
Disturbance of natural plant communities is the first visible indication of a desertification process, but damage to physical, chemical, and biological soil properties is known to occur simultaneously. Such soil degradation limits reestablishment of the natural plant cover. In particular, desertification causes disturbance of plant-microbe symbioses which are a critical ecological factor in helping further plant growth in degraded ecosystems. Here we demonstrate, in two long-term experiments in a desertified Mediterranean ecosystem, that inoculation with indigenous arbuscular mycorrhizal fungi and with rhizobial nitrogen-fixing bacteria not only enhanced the establishment of key plant species but also increased soil fertility and quality. The dual symbiosis increased the soil nitrogen (N) content, organic matter, and hydrostable soil aggregates and enhanced N transfer from N-fixing to nonfixing species associated within the natural succession. We conclude that the introduction of target indigenous species of plants associated with a managed community of microbial symbionts is a successful biotechnological tool to aid the recovery of desertified ecosystems.  相似文献   

16.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

17.
Symbiotic interactions of the tripartite association of soybeanplant, vesiculararbuscular (VA) mycorrhizal fungus and Rhizobiumjaponicum were shown. Mycorrhizal plants absorbed more P, Ca and Mg and had higherP, Ca and Mg contents in their stems or leaves than non-mycorrhizalplants. Phosphorus concentration was also higher in the nodulesof mycorrhizal plants. VA mycorrhizae increased nodule number, nodule weight and acetylenereduction activity of nodules. Concomitantly seed productionand N content of leaves were enhanced. Both nodulating (A62-1) and non-nodulating (A62-2) cultivarsof soybean plants [Glycine max (L.) Merr.] were colonized byVA mycorrhizal fungi, identified as belonging to the genus Glomus. (Received August 12, 1985; Accepted January 14, 1986)  相似文献   

18.
豆科植物凝集素及其对根瘤菌的识别作用   总被引:22,自引:0,他引:22  
本文讨论了豆科植物凝集素的性质、分布、基因及其表达;近年来研究表明识别根瘤菌的因子是豆科植物根上的凝集素。将一种豆科植物的凝集素基因转化到另一种豆科植物后,再接种前一种豆科植物的根瘤菌,可以使其被侵染和结瘤。由此人们提出了扩大根瘤菌宿主范围到非豆科植物,特别是粮食作物范围的可能性。  相似文献   

19.
The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short‐chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor‐like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide‐based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号