首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldehyde dehydrogenase (ALDH) catalyzes the conversion of aldehydes to the corresponding acids by means of an NAD(P)+-dependent virtually irreversible reaction. In this investigation, the biophysical properties of a recombinant Bacillus licheniformis ALDH (BlALDH) were characterized in detail by analytical ultracentrifuge (AUC) and various spectroscopic techniques. The oligomeric state of BlALDH in solution was determined to be tetrameric by AUC. Far-UV circular dichroism analysis revealed that the secondary structures of BlALDH were not altered in the presence of acetone and ethanol, whereas SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl]05, N-U, at 0.93 M. BlALDH was active at concentrations of urea below 2 M, but it experienced an irreversible unfolding under 8 M denaturant. Taken together, this study provides a foundation for the future structural investigation of BlALDH, a typical member of ALDH superfamily enzymes.  相似文献   

2.
Hemicellulose is a major component of lignocellulose biomass. Complete degradation of this substrate requires several different enzymatic activities, including xylanase. We isolated a strain of Bacillus licheniformis from a hot springs environment that exhibited xylanase activity. A gene encoding a 23-kDa xylanase enzyme, Xyn11, was cloned, and the recombinant protein was expressed in an Escherichia coli host and biochemically characterized. The optimum activity of the enzyme was at pH 5-7 and 40-50 degrees C. The enzyme was stable at temperatures up to 50 degrees C. Against birchwood xylan, the enzyme had an apparent K ( m ) of 6.7 mg/mL and V (max) of 379 mumol/min/mg.  相似文献   

3.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

4.
5.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

6.
7.
This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10% (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, and maximum activity was detected with benzyl alcohol and 2-phenyl-1-propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1-phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts.  相似文献   

8.
Plant vacuolar Na+/H+ antiporter plays an important role in salt tolerance. A vacuolar Na+/H+ antiporter gene TrNHX1 was cloned from Trifolium repens L., a forage legume, by RT-PCR and RACE methods using degenerate oligonucleotide primers. The TrNHX1 sequence contains 2,394 nucleotides and an open-reading frame of 1,626 nucleotides that encodes a protein of 541 amino acids with a deduced molecular mass of 59.5 kDa. The deduced amino acid sequence of TrNHX1 is 78% identical to that of a vacuolar Na+/H+ antiporter of Arabidopsis thaliana, AtNHX1, and contains the consensus amiloride-binding domain. TrNHX1 could partially complement the NaCl-sensitive phenotypes of yeast mutants Δnhx1 and Δena1-4Δnhx1, and a similar complementation was also observed in the presence of LiCl and KCl. In addition, it was found that TrNHX1 suppressed the hygromycin-sensitive phenotype of yeast mutant Δena1-4Δnhx1. The expression of TrNHX1 in T. repens increased in the presence of 150 mM NaCl, and this result accords with that of Na+ contents determination under the same treatment. These results suggest that TrNHX1 functions as a vacuolar Na+/H+ antiporter and plays an important role in salt tolerance and ion homeostasis in T. repens.  相似文献   

9.
10.
11.
Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.  相似文献   

12.
13.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

14.
Vacuolar-type H+-ATPase (V-ATPase), a multi-subunit endomembrane proton pump, plays an important role in plant growth and response to environmental stresses. In the present study, transgenic tobacco that overexpressed the V-ATPase c subunit gene from Iris lactea (IrlVHA-c) was used to determine the function of IrlVHA-c. Quantitative PCR analysis showed that IrlVHA-c expression was induced by salt stress in I. lactea roots and leaves. Subcellular localization of green fluorescent protein (GFP) as marker combined with FM4-64 staining showed that the IrlVHA-c-GFP was localized to the endosomal compartment in tobacco cells. Compared with the wild-type, the IrlVHA-c transgenic tobacco plants exhibited greater seed germination rates, root length, fresh weight, and higher relative water content (RWC) of leaves under salt stress. Furthermore, the IrlVHA-c transgenic tobacco leaves have lower stomatal densities and larger stomatal apertures than wild-type. Under salt stress, superoxide dismutase (SOD) activity in the transgenic tobacco was significantly enhanced. Moreover, the level of malondialdehyde (MDA) in the transgenic tobacco was significantly lower than that in wild-type plants under salt stress. Taken together, these results suggested that the IrlVHA-c plays an important role in salt tolerance in transgenic tobacco by influencing stomatal movement and physiological changes.  相似文献   

15.
16.
Thermoplasma acidophilum utilizes l-rhamnose as a sole carbon source. To determine the metabolic pathway of l-rhamnose in Archaea, we identified and characterized l-rhamnose dehydrogenase (RhaD) in T. acidophilum. Ta0747P gene, which encodes the putative T. acidophilum RhaD (Ta_RhaD) enzyme belonging to the short-chain dehydrogenase/reductase family, was expressed in E. coli as an active enzyme catalyzing the oxidation of l-rhamnose to l-rhamnono-1,4-lactone. Analysis of catalytic properties revealed that Ta_RhaD oxidized l-rhamnose, l-lyxose, and l-mannose using only NADP+ as a cofactor, which is different from NAD+/NADP+-specific bacterial RhaDs and NAD+-specific eukaryal RhaDs. Ta_RhaD showed the highest activity toward l-rhamnose at 60 °C and pH 7. The K m and k cat values were 0.46 mM, 1,341.3 min−1 for l-rhamnose and 0.1 mM, 1,027.2 min−1 for NADP+, respectively. Phylogenetic analysis indicated that branched lineages of archaeal RhaD are quite distinct from those of Bacteria and Eukarya. This is the first report on the identification and characterization of NADP+-specific RhaD.  相似文献   

17.
According to sequences of several vacuolar Na+/H+ antiporter genes from Xinjiang halophytic plants, a new vacuolar Na+/H+ antiporter gene (HcNHX1) from the halophyte Halostachys caspica was obtained by RACE and RT-PCR using primers corresponding to conserved regions of the coding sequences. The obtained HcNHX1 cDNA was 1,983 bp and contained a 1,656 bp open reading frame encoding a deduced protein of 551 amino acid residues. The deduced amino acid sequence showed high identity with other NHX1 we have cloned previously from halophyte in Xinjiang desert area. The phylogenetic analysis showed that HcNHX1 formed a clade with NHX homologs of Chenopodiaceae. Expression profiles under salt treatment and ABA induction were investigated, and the results revealed that expression of HcNHX1 was induced by NaCl and ABA. To compare the degree of salt tolerance, we over-expressed HcNHX1 in Arabidopsis. Two transgenic lines grew more vigorously than the wild type (WT) under salt stress. The analysis of ion contents indicated that under salt stress, the transgenic plants compartmentalized more Na+ in the leaves compared with wild-type plants. Together, these results suggest that the products of the novel gene HcNHX1 from halophyte Halostachys caspica is a functional tonoplast Na+/H+ antiporter.  相似文献   

18.
Yu J  Xu W  Zeng S  Zhang X  Liu J  Xie R  Pang Y 《Current microbiology》2002,45(5):309-314
Bacillus thuringiensis (Bt) cyt genes coding hemolytic and cytolytic toxins constitute a gene family, which are divided into two groups: cyt1 and cyt2. A novel cyt2 gene was detected from a soil-isolated Bt strain T301, which was highly homologous to cyt2Ba1 and finally designated cyt2Ba7. Until now, Cyt2Ba has not been expressed alone in Bt or other hosts. In this study, the cyt2Ba7 gene was cloned into the vector pQE30 and expressed as a fusion protein with 6×Histidine residues in Escherichia coli. Unlike cyt1A, cyt2Ba7 was freely expressed and formed cytoplasmic inclusions without the need for a “helper” protein. The 6×His-tagged Cyt2Ba7 was purified in one step by Ni-NTA affinity chromatography, examined cytolytic activity on Sf9 cells, and developed as an antigen to obtain the antiserum against Cyt2Ba by subcutaneous injection into rabbits. This gene was also cloned into the Bt–E. coli shuttle vector pHT3101 and expressed in Bt strain 4Q7. Immunoblotting analysis revealed that the antiserum was remarkably selective and specific to Cyt2Ba. Received: 21 December 2001 / Accepted: 28 January 2002  相似文献   

19.
The interaction of [PSI +] and [PIN +] factors in yeast Saccharomyces cerevisiae is known as the first evidence of prions networks. In [PIN +] cells, Rnq1p prion aggregates work as a template for Sup35p aggregation, which is essential for [PSI +] induction. No additional factors are required for subsequent Sup35p aggregation. Nevertheless, several recent reports provide data that indicate a more complex interplay between these prions. Our results show that the presence of Rnq1p in the cell significantly decreases the loss of [PSI +] prion, which is caused by a double mutation in SUP35 (Q61K, Q62K substitutions in the Sup35 protein). These observations support the existence of interaction networks that converge on a strong linkage of prionogenic and prion-like proteins, and the participation of Rnq1 protein in the maintenance of prion [PSI +].  相似文献   

20.
The NADH dehydrogenase I from Escherichia coli is a bacterial homolog of the mitochondrial complex I which translocates Na+ rather than H+. To elucidate the mechanism of Na+ transport, the C-terminally truncated NuoL subunit (NuoLN) which is related to Na+/H+ antiporters was expressed as a protein A fusion protein (ProtA–NuoLN) in the yeast Saccharomyces cerevisiae which lacks an endogenous complex I. The fusion protein inserted into membranes from the endoplasmatic reticulum (ER), as confirmed by differential centrifugation and Western analysis. Membrane vesicles containing ProtA–NuoLN catalyzed the uptake of Na+ and K+ at rates which were significantly higher than uptake by the control vesicles under identical conditions, demonstrating that ProtA–NuoLN translocated Na+ and K+ independently from other complex I subunits. Na+ transport by ProtA–NuoLN was inhibited by EIPA (5-(N-ethyl-N-isopropyl)-amiloride) which specifically reacts with Na+/H+ antiporters. The cation selectivity and function of the NuoL subunit as a transporter module of the NADH dehydrogenase complex is discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号