首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transsynaptic regulation of acetylcholinesterase (AChE) was studied by recording the changes in enzymatic activity following denervation in two types of autonomic ganglia in the frog, Rana pipiens. Opposite effects on AChE were found in the parasympathetic cardiac ganglion and in the sympathetic lumbar ganglion; denervation produced a significant increase in AChE activity in cardiac ganglia but a significant decrease in lumbar ganglia. The relative effects of denervation on intracellular and total AChE were examined by selectively inhibiting extracellular AChE with echothiophate, a poorly lipid-soluble cholinesterase inhibitor. Denervation resulted in a significant increase in intracellular AChE in cholinergic cardiac ganglia but had no effect on intracellular AChE activity in adrenergic lumbar ganglia. Histochemical studies revealed little change in extracellular AChE staining upon denervation in the cardiac ganglion, whereas in the lumbar ganglia there was a loss of AChE-specific reaction product. These results raise the possibility that the transsynaptic control of AChE activity by innervation in the frog is influenced by the transmitter synthetic properties of the postsynaptic ganglion cells.  相似文献   

2.
Binding of tritiated ligands of muscarinic and dopamine receptors was analysed in rats 1, 7, 14, 28, 60 days and 24-30 months old. The following ganglia were studied: the nodose ganglion, the lumbar ganglia of sympathetic chain, the main pelvic ganglion in male rats and the paracervical ganglion in female rats. The same level was found for binding of each of ligands for all investigated ganglia. Parameters of postnatal dynamics of development M-cholino- and dopamine reception systems prove to be quite similar, but not identical. Both of the systems reach matured level during first 2 postnatal weeks. In comparison with quinuclidinylbenzilate binding failure of dopamine binding in aged rats is to be more pronounced.  相似文献   

3.
The number and intensity of fluorescence of small, intensely fluorescent cells were measured on serial slices of main pelvic (MPG) ganglion and lumbar ganglia of sympathetic trunk (LG), treated by modified Falck method, on days 1, 7, 14, 28, and 26-30 months of age. The content of paraform-induced fluorescence increased with age of two weeks and later in SIF cells of MPG and LG. The number of SIF cells in LG decreased with age, while that of MPG increased. The growth of a number of SIF cells in MPG was detected in large clusters.  相似文献   

4.
The distribution and origin of substance P immunoreactive nerve elements have been studied in the guinea-pig prevertebral ganglia by the indirect immunohistochemical technique, using a monoclonal antibody to substance P. Non-varicose substance P immunoreactive nerve fibres enter or leave the ganglia in all nerves associated with them, traversing the ganglia in larger or smaller bundles. Networks, mainly single-stranded, of varicose substance P immunoreactive nerve fibres also permeate the ganglia, forming a loose meshwork among the neurons. Similar networks are present in the lumbar paravertebral ganglia. In all these ganglia, neuronal somata do not in general show substance P immunoreactivity. The various nerves connected with the inferior mesenteric ganglion have been cut, in single categories and in various combinations, and the ganglion examined, after intervals of up to six days. Cutting the colonic or hypogastric nerves, which connect the ganglion with the hindgut and pelvic organs, leads to accumulation of substance P immunoreactive material in their ganglionic stumps, extending retrogradely to intraganglionic non-varicose fibres traceable through into the intermesenteric and lumbar splanchnic nerves. There is some local depletion of intraganglionic varicose networks. Cutting the intermesenteric nerve, which connects the coeliac-superior mesenteric ganglion complex with the ganglion, leads to accumulation of substance P immunoreactive material in its cranial stump and depletion of its distal stump; a minimal depletion is detectable in the inferior mesenteric ganglion itself. Cutting the lumbar splanchnic nerves, which connect the ganglion with the upper lumbar spinal cord and dorsal root ganglia, leads to accumulation of substance P immunoreactive material in their proximal stumps and total depletion of their distal, ganglionic stumps; in the ganglion there is subtotal loss of non-varicose substance P immunoreactive fibres and of varicose nerve networks, and the few surviving non-varicose fibres are traceable across the ganglion from the intermesenteric nerve to the colonic and hypogastric nerves. Cutting the intermesenteric and lumbar splanchnic nerves virtually abolishes substance P immunoreactive elements from the ganglion within three days postoperatively. It is concluded that these arise centrally to the ganglion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The spectral curves of emission of paraform-induced fluorophores in small, intensely fluorescent (SIF) cells in lumbar ganglia of the sympathetic trunk and in the major pelvic ganglion were compared with the fluorescence spectra of lipofuscin granules in the perikaryons of the neurons of the vagus inferior ganglion. As a rule, the fluorescence spectra of SIF cells correlate with the content in them of catecholamines. The spectral characteristics of fluorophores of so-called "yellow" SIF cells have much in common with the fluorescence spectra of lipofuscin granules. Apparently, in some of cases small cells containing lipofuscin may be identified as "yellow" SIF cells.  相似文献   

6.
The innervation of the urinary bladder is known to include a considerable number of nerves containing vasoactive intestinal polypeptide (VIP). The origin of such nerves in the bladder of rat was investigated in this study using the methods of immunocytochemistry and radioimmunoassay combined with surgical sectioning of the hypogastric and/or pelvic nerves to the bladder. Eight days after pelvic nerve sectioning proximal to the main pelvic ganglion, VIP-immunoreactive nerves and VIP content were markedly increased from the level in the sham-operated rat bladder. Sectioning of hypogastric or both nerve pathways led to a less significant increase. It was therefore postulated that the majority of VIP-immunoreactive nerves originate from ganglia located either close to the bladder or within the bladder wall. It is interesting that in these experiments the VIP content of the bladder nerves is inversely related to the changes in motility that would be expected to result from the nerve sections.  相似文献   

7.
Summary In male rats a large number of the postganglionic neurons which innervate the pelvic organs are located in the major pelvic ganglion. In the present study we have identified the location within this ganglion of neurons which project to either of three pelvic organs, the penis, colon or urinary bladder. Two fluorescent retrogradely-transported dyes, Fast Blue and Fluoro-Gold, were used. For most animals one dye was injected into the cavernous space of the penis, the wall of the distal colon or the wall of the urinary bladder. In a small number of animals two organs were injected, each with a different dye. One to six weeks after injection the major pelvic ganglia were fixed in buffered formaldehyde. The distribution of fluorescent dye-labelled cells was observed in whole mounts of complete ganglia and, in most cases, also in small accessory ganglia located between the ureter and the prostate. The studies showed a unique pattern of distribution for each organ-specific group of neurons. Most of the colon neurons are located in the major pelvic ganglion near the entrance of the pelvic nerve, whereas almost all of the penis neurons are near or within the penile nerve. Bladder neurons are relatively evenly distributed throughout the ganglion. These results demonstrate a distinct topographical organization of organ-specific neurons of the major pelvic ganglion of the male rat, a phenomenon which has also been observed in other peripheral ganglia.  相似文献   

8.
Summary The localization of l-glutamate decarboxylase (GAD), the GABA-synthesizing enzyme, was studied in the rat major pelvic ganglion and in the coeliac-superior mesenteric ganglion complex by indirect immunofluorescence technique with a specific antiserum raised in rabbits. GAD immunoreactivity was demonstrated in small cells of these ganglia. The GAD-immunoreactive small cells were 10–20 m in diameter and formed clusters or occured as solitary cells. The principal neurons were non-reactive but they were surrounded by immunoreactive processes. Studies on colocalization of GAD with tyrosine hydroxylase (TH), the rate-limiting enzyme of the catecholamine synthesis, in the major pelvic ganglion and in the coeliac-superior mesenteric ganglion complex indicated that all GAD-immunoreactive small cells were also labelled with TH. In the major pelvic ganglion all TH-immunoreactive SIF cells were also immunoreactive for GAD. However, in the coeliac-superior mesenteric ganglion complex there occured TH-immunoreactive small cells which showed no immunoreactivity to GAD. It is suggested that the small GAD-immunoreactive cells represent small intensely fluorescent (SIF) cells.  相似文献   

9.
The role of cyclic nucleotides as intracellular second messengers mediating the excitatory chronotropic and inotropic actions of octopamine (OCT) and dopamine (DA) on the neurogenic Limulus heart was investigated. Tissue levels of cAMP, but not cGMP, were significantly increased in isolated cardiac ganglia and cardiac muscle following 10 min exposure to 10(-5) M OCT or 10(-5) M DA. In both tissues, OCT elicited larger increases in cAMP than did DA. Amine-induced cAMP accumulation in the cardiac ganglion and in the cardiac muscle was prevented by the alpha-adrenergic blocker phentolamine. The adenylate cyclase activator forskolin and the phosphodiesterase inhibitor IBMX produced amine-like chronotropic and inotropic effects when applied to the isolated heart preparation. However, the kinetics of the responses differed for the two agents. Additional pharmacological agents (RO-20-1724, papaverine, SQ 20,009, and 8-parachloro-phenylthio cAMP) also had amine-like effects but to a lesser extent. The chronotropic, but not inotropic, effects of OCT and DA were potentiated in the presence of IBMX. These data suggest that a cAMP-dependent mechanism underlies the excitatory effects of the neuromodulators OCT and DA on the Limulus heart.  相似文献   

10.
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, which indicates the presence of neural nitric oxide synthase, the enzyme responsible for the generation of nitric oxide, was used in combination with retrograde labelling methods to determine, in whole-mounts and sections of rat major pelvic ganglia, whether neurons destined for the penile corpora cavernosa were able to produce nitric oxide. In whole-mount preparations of pelvic ganglia, among the 607±106 retrogradely labelled neurons innervating the penile corpora cavernosa, 84±7% were NADPH-diaphorase-positive, 30±7% of which were intensely histochemically stained. In serial sections of pelvic ganglia, out of a mean count of 451 retrogradely labelled neurons, 65% stained positively for NADPH-diaphorase. An average of 1879±363 NADPH-diaphorase positive cell bodies was counted in the pelvic ganglion. In the major pelvic ganglion, neurons both fluorescent for Fluorogold or Fast Blue and intensely stained for NADPH-diaphorase were consistently observed in the dorso-caudal part of the ganglia in the area close to the exit of the cavernous nerve and within this nerve. This co-existence was much less constant in other parts of the ganglion. In the rat penis, many NADPH-diaphorase-positive fibres and varicose terminals were observed surrounding the penile arteries and running within the wall of the cavernous spaces. This distribution of NADPH-diaphorase-positive nerve cells and terminals is consistent with the idea that the relaxation of the smooth muscles of the corpora cavernosa and the dilation of the penile arterial bed mediated by postganglionic parasympathetic neurons is attributable to the release of nitric oxide and that nitric oxide plays a crucial role in penile erection. Moreover, the existence in the pelvic ganglion of a large number of NADPH-diaphorase-positive neurons that are not destined for the corpora cavernosa suggests that nitric oxide is probably also involved in the function of other pelvic tissues.  相似文献   

11.
The main aim of this study was to clarify the general morphology of the autonomic cardiac nervous system in macaque monkeys. A submacroscopic comparative anatomical study of the autonomic cardiac nervous system was performed by examining 22 sides of 11 bodies of four species of macaque monkeys, including some previously unreported species (pig-tailed and stump-tailed monkeys), under a surgical stereomicroscope. The following results were obtained. 1) The basic arrangement of the autonomic cardiac nervous system is constant in all examined macaques. 2) A superior cardiac nerve originating from the superior cervical ganglion was not observed, whereas the thoracic cardiac nerve originating from the sympathetic trunk/ganglia under the cervicothoracic ganglion was rarely observed in all the examined macaques. 3) The main cardiac nerve is the middle cardiac nerve originating from the middle cervical ganglion, similar to the situation in humans. 4) Although the superior, inferior, and thoracic cardiac branches of the vagus nerve were consistently observed, the left thoracic cardiac branch is rarely absent because of its lower origin to the heart. 5) The cranial autonomic nerves tend to distribute into the heart medially (arterial porta), and the caudal autonomic nerves tend to distribute into the heart laterally (venous porta). To comprehend the comparative morphological and evolutionary changes more completely, these results were compared with our previous studies and some references. Consequently, differences in the sympathetic cardiac nerves of macaques and humans are recognized, in spite of the similar morphologies of the vagal cardiac branches. These differences include the composition of the cervicothoracic ganglion, the lower positions of the middle cervical and cervicothoracic ganglia, and the narrow range for the origin of the cardiac nerves in macaques compared to that in humans.  相似文献   

12.
Tonic activity of neurons of the superior cervical sympathetic ganglion was recorded by the "sucrose gap" method and in the 4th and 5th lumbar sympathetic ganglia with the aid of focal nonpolarizing electrodes in acute experiments on anesthetized cats and rabbits. The preganglionic fibers of the ganglia were left intact. Stimulation of the depressor nerve not only sharply inhibited the tonic activity of the ganglia but also led to the appearance of electropositive potentials of 0.7 ± 0.2 mV in the superior cervical ganglion and 20–250 µV in the lumbar ganglia. The amplitude of this potential was unchanged by atropine (1 · 10–6M). A similar effect occured without stimulation of the depressor nerve, after division of the preganglionic fibers or blocking of their conduction; it is attributed to the cessation of preganglionic tonic impulses which induce not only spikes, but also many EPSPs in neurons of the ganglion. Their frequency in the lumbar ganglia was 4/sec. Summation of these EPSPs leads to constant electronegativity of the ganglion surface relative to the postganglionic fibers, and its disappearance is recorded as a positive potential. Stimulation of the depressor nerve thus does not induce IPSPs in the ganglion; consequently, the inhibition of synaptic activity observed under these circumstances is located in the CNS and not in the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 5, pp. 519–524, September–October, 1974.  相似文献   

13.
Intracardiac pathways mediating the parasympathetic control of various cardiac functions are incompletely understood. Several intracardiac ganglia have been demonstrated to potently influence cardiac rate [the sinoatrial (SA) ganglion], atrioventricular (AV) conduction (the AV ganglion), or left ventricular contractility (the cranioventricular ganglion). However, there are numerous ganglia found throughout the heart whose functions are poorly characterized. One such ganglion, the posterior atrial (PA) ganglion, is found in a fat pad on the rostral dorsal surface of the right atrium. We have investigated the potential impact of this ganglion on cardiac rate and AV conduction. We report that microinjections of a ganglionic blocker into the PA ganglion significantly attenuates the negative chronotropic effects of vagal stimulation without significantly influencing negative dromotropic effects. Because prior evidence indicates that the PA ganglion does not project to the SA node, we neuroanatomically tested the hypothesis that the PA ganglion mediates its effect on cardiac rate through an interganglionic projection to the SA ganglion. Subsequent to microinjections of the retrograde tracer fast blue into the SA ganglion, >70% of the retrogradely labeled neurons found within five intracardiac ganglia throughout the heart were observed in the PA ganglion. The neuroanatomic data further indicate that intraganglionic neuronal circuits are found within the SA ganglion. The present data support the hypothesis that two interacting cardiac centers, i.e., the SA and PA ganglia, mediate the peripheral parasympathetic control of cardiac rate. These data further support the emerging concept of an intrinsic cardiac nervous system.  相似文献   

14.
T Karhula  O H?pp?l?  T Joh  J Y Wu 《Histochemistry》1988,90(4):255-260
The localization of L-glutamate decarboxylase (GAD), the GABA-synthesizing enzyme, was studied in the rat major pelvic ganglion and in the coeliac-superior mesenteric ganglion complex by indirect immunofluorescence technique with a specific antiserum raised in rabbits. GAD immunoreactivity was demonstrated in small cells of these ganglia. The GAD-immunoreactive small cells were 10-20 microns in diameter and formed clusters or occurred as solitary cells. The principal neurons were non-reactive but they were surrounded by immunoreactive processes. Studies on colocalization of GAD with tyrosine hydroxylase (TH), the rate-limiting enzyme of the catecholamine synthesis, in the major pelvic ganglion and in the coeliac-superior mesenteric ganglion complex indicated that all GAD-immunoreactive small cells were also labelled with TH. In the major pelvic ganglion all TH-immunoreactive SIF cells were also immunoreactive for GAD. However, in the coeliac-superior mesenteric ganglion complex there occurred TH-immunoreactive small cells which showed no immunoreactivity to GAD. It is suggested that the small GAD-immunoreactive cells represent small intensely fluorescent (SIF) cells.  相似文献   

15.
Summary Paravertebral (superior cervical and stellate), prevertebral (coeliac-superior mesenteric, inferior mesenteric) and pelvic (hypogastric) sympathetic ganglia of the rat were investigated by enzyme histochemistry to ascertain the distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity. In the paravertebral ganglia the majority of the sympathetic neuronal perikarya contained lightly and homogeneously distributed formazan reaction product but there was a range of staining intensities amongst the neuron population. In contrast, in the prevertebral ganglia, intense NADPH-diaphorase staining was present in certain neurons. Firstly, a population of neurons of the coeliac-superior mesenteric ganglion complex were surrounded by densely NADPH-diaphorase-positive baskets of fibres and other stained fibres were seen in interstitial nerve bundles and in nerve trunks connected to the ganglion complex. Secondly, in both the inferior mesenteric ganglion and hypogastric ganglion there were many very intensely NADPH-diaphorase positive neurons. Stained dendritic and axonal processes emerged from these cell bodies. In both ganglia this population of neurons was smaller in size than the lightly stained ganglionic neurons and commonly had only one long (presumably axonal) process. The similarity of these highly NADPH-diaphorase-positive neurons with previously described postganglionic parasympathetic neurons in the hypogastric ganglion is discussed.  相似文献   

16.
The pelvic ganglia are mixed ganglia containing both sympathetic and parasympathetic neurons that receive spinal input via the hypogastric (lumbar cord) and pelvic nerves (sacral cord), respectively. A recent study has utilised immunohistochemistry against synaptophysin (a protein associated with small vesicles) to visualise the preganglionic terminals in these ganglia. By selectively cutting the hypogastric or pelvic nerves and allowing subsequent terminal degeneration, the populations of parasympathetic and sympathetic preganglionic terminals, respectively, can be visualised. The present study has used this method in conjunction with retrograde labelling of pelvic neurons from the distal colon and double label immunofluorescence against tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) to identify and characterise the sympathetic and parasympathetic neurons projecting to the distal colon from the major pelvic ganglia of the male rat. Approximately equal numbers of distal colonic-projecting pelvic neurons are sympathetic and parasympathetic. Almost all noradrenergic neurons are sympathetic. Of the VIP neurons that project to the distal colon approximately one third are sympathetic, one third parasympathetic and the remaining third are possibly innervated by both the lumbar and sacral cord. Extrapolation from our results also suggests that the majority of non-noradrenergic neuropeptide Y neurons (which are known to comprise the remainder of the neurons) are parasympathetic. These studies have demonstrated that the pelvic ganglia are a major source of sympathetic innervation to the distal bowel and have further shown that the distal colon is another target for the non-noradrenergic sympathetic neurons of the pelvic ganglia.  相似文献   

17.
Summary The formaldehyde-induced fluorescence (FIF) of the cytoplasm of individual developing neurons of the main pelvic ganglion was recorded microspectrofluorimetrically in order to follow changes in catecholamine (noradrenaline) content during development. For each ganglion, the fluorescence intensity profile was estimated and shown graphically as columns expressing percentage distribution of relative intensities in different intensity classes.During development, the number of weakly fluorescent neurons increases. Treatment with testosterone shifts the profile towards higher intensities in four- and six-week-old animals. Testosterone affected the main pelvic ganglion but not the superior cervical ganglion.The intensity of the cytoplasmic FIF, which correlates with the catecholamine (noradrenaline) content of the object tissue, showed a tendency to decrease during development. This change was not obvious by visual observation because of the increase in cell size and the toal bulk of the ganglion. Other possible factors affecting visual observation are discussed.  相似文献   

18.
The present study investigated: (1) the distribution and chemical coding of primary sensory neurons supplying the vas deferens in juvenile pigs by the use of retrograde tracing combined with double-labelling immunofluorescence, (2) nerve pathways from dorsal root ganglia (DRG) to the vas deferens by means of denervation procedures involving transection of the hypogastric or pelvic nerve combined with a retrograde tracing method, and (3) possible interactions of the substance P (SP)/calcitonin gene-related peptide (CGRP)-immunoreactive varicose nerve fibres on vas deferens projecting neurons (VDPN) in the anterior pelvic ganglion (APG). The vast majority of VDPN were found mainly in the lumbar L2, L3 and sacral S2, S3 pairs of DRG and showed a clear ipsilaterally organized projection pattern. Immunohistochemistry revealed that most of these neurons contained SP and/or CGRP, occasionally coexpressed with galanin. Interestingly, pronounced differences in the expression of SP and/or CGRP were observed between the lumbar and sacral VDPN in that most of the lumbar but less than half of the sacral neurons stained for these peptides. Denervation experiments showed that the neurons located within the lumbar DRG project through the ipsilateral hypogastric nerve, whereas those found within the sacral DRG send their processes through the ipsilateral and contralateral pelvic nerve. In the nerve-lesioned animals, especially in those with the hypogastric nerve cut, a dramatic reduction in the number of SP and/or CGRP-containing nerve terminals surrounding the efferent VDPN within the APG was observed. This study has disclosed the distribution and, for the first time, chemical coding and nerve pathways of vas deferens-projecting primary sensory neurons in a mammalian species, the pig. The results obtained also provide some novel information about the possible morphological and functional relationship between vas deferens-projecting primary sensory and pelvic efferent nerve cells.  相似文献   

19.
Comparative studies of [3H]choline accumulation were done in the Limulus corpora pedunculata, abdominal ganglia and cardiac ganglion. Dual uptake processes for choline were found in all three tissues. In acute experiments, the corpora pedunculata high affinity choline uptake system showed exclusive sensitivity to ouabain. Prolonged exposure to ouabain revealed that the HAChUS of all three tissues were significantly inhibited. The metabolism of [3H]choline transported via the high affinity process in the three tissues was studied. [3H]Acetylcholine was a major product of the [3H]choline taken up by the corpora pedunculata and the abdominal ganglia. Phosphorylcholine was the major product seen in cardiac ganglion extracts and occurred in significant proportions in abdominal ganglia extracts. [3H]Acetylcholine was not detected in cardiac ganglion extracts. Treatment with either lithium chloride or hemicholinium-3 markedly inhibited high affinity uptake of [3H]choline in all three tissues.  相似文献   

20.
Pelvic ganglia are mixed sympathetic-parasympathetic ganglia and provide the majority of the autonomic innervation to the urogenital organs. Here we describe the structural and histochemical features of the major pelvic ganglion in the male mouse and compare two different mouse strains. The basic structural features of the ganglion are similar to those in the male rat. Almost all pelvic ganglion cells are monopolar and most are cholinergic. All contain either neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP), or both peptides together. The peptide coexistence varies between strains, with C57BL/6 mice having similar proportions of neurons with NPY alone, VIP alone or both peptides. In contrast, virtually all pelvic neurons in the Quackenbush-Swiss (QS) strain express NPY, i.e. the level of VIP/NPY coexistence is much higher. Cholinergic axons provide the major nerve supply to epithelia of reproductive organs, bladder smooth muscle and, as described previously, penile erectile tissue. They also provide a minor component of the smooth muscle innervation of the prostate gland, seminal vesicles and vas deferens. Virtually all non-cholinergic pelvic ganglion cells are noradrenergic and contain NPY. Their major target is smooth muscle of reproductive organs. This study shows that the male mouse pelvic ganglion bears many similarities to that in the rat, but that VIP/NPY colocalisation is much more common in the mouse. We also show that there are differences in peptide expression in parasympathetic pelvic neurons between strains of mice. These studies provide the framework for future investigations on neural regulation of urogenital function, particularly in transgenic and knockout models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号