首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu-tyrosine complex, a low molecular weight analog of superoxide dismutase, exerts an inhibiting effect on cytochrome P-450. The inactivation of cytochrome Y-450 with its transition to cytochrome Y-420 can cause the inhibition by the Cu2+ - Tyr2 complex of dimethylaniline N-demethylation and p-nitroanisol O-demethylation. In case of p-hydroxylation of aniline the inhibiting effect of the Cu-tyrosine complex is much more pronounced than its inactivating effect on cytochrome P-450. In the presence of albumin the complex produced no inactivating effect on cytochrome P-450; under these conditions the inhibiting effect of Cu2+ - Tyr2 on N- and O-demethylation is removed. In case of aniline p-hydroxylation albumin partly decreases the inhibiting effect of the complex on this reaction. In a soluble system containing isolated cytochrome P-450 and cumole hydroperoxide only the aniline p-hydroxylation reaction was found sensitive to the effect of superoxide dismutase. The data obtained suggest participation of the superoxide radical only in aniline p-hydroxylation but not in the reactions of N-demethylation of dimethylaniline and O-dealkylation of p-nitroanisol.  相似文献   

2.
In order to evaluate the O-2 participation in NADPH-dependent microsomal lipid peroxidation, we used reconstructed system which contained detergent-solubilized NADPH-dependent cytochrome P-450 reductase, cytochrome P-450, phospholipid liposomes, NADPH and Fe3+-ADP. Lipid peroxidation, monitored by the formation of thiobarbituric acid-reactive substance, was increased with increasing concentration of detergent-solubilized NADPH cytochrome P-450 reductase, cytochrome P-450 or Fe3+-ADP. Cytochrome P-450-dependent lipid peroxidation was parallel to O-2 generation monitored by chemiluminescence probe with 2-methyl-6-(p-methoxyphenol)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one. Lipid peroxidation was significantly inhibited by superoxide dismutase, but not by catalase or sodium benzoate. The reconstructed system herein described is considered to be very close to NADPH-dependent microsomal lipid peroxidation system.  相似文献   

3.
The relationship between the degradation reaction of cytochrome P-450 and lipid peroxidation was studied utilizing bovine adrenal cortex mitochondria. The two reactions were found to be closely correlated in terms of their response to storage of the mitochondrial preparation, stimulation by Fe2+, inhibition by EDTA and their initiation by cumene hydroperoxide. Both reactions were also found not to be inhibited by catalase, superoxide dismutase, 1,4-diazabicyclo-(2,2,2)-octane and alcohols, indicating that H2O2, superoxide, singlet oxygen and hydroxyl radicals do not participate in these reactions. Yet, diphenylamine proved to be a powerful inhibitor for both reactions, suggesting the involvement of a radical species. Cumene hydroperoxide could induce these two reactions at below 0.1 mM concentrations in the presence of molecular oxygen. The chemiluminescence observed during the Fe2+-mediated lipid peroxidation reaction which was not inhibited by either superoxide dismutase or 1,4-diazabicyclo-(2,2,2)-octane, was biphasic: one was a rapid burst; and the other was a slowly increasing emission. The latter portion of the emission of light coincided with the formation of malondialdehyde. These results indicate that in adrenal cortex mitochondria the degradation of cytochrome P-450 is closely related to lipid peroxidation.  相似文献   

4.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

5.
Hann-Ping Wang  Tokuji Kimura 《BBA》1976,423(3):374-381
The relationship between the degradation reaction of cytochrome P-450 and lipid peroxidation was studied utilizing bovine adrenal cortex mitochondria. The two reactions were found to be closely correlated in terms of their response to storage of the mitochondrial preparation, stimulation by Fe2+, inhibition by EDTA and their initiation by cumene hydroperoxide. Both reactions were also found not to be inhibited by catalase, superoxide dismutase, 1,4-diazabicyclo-(2,2,2)-octane and alcohols, indicating that H2O2, superoxide, singlet oxygen and hydroxyl radicals do not participate in these reactions. Yet, diphenylamine proved to be a powerful inhibitor for both reactions, suggesting the involvement of a radical species. Cumene hydroperoxide could induce these two reactions at below 0.1 mM concentrations in the presence of molecular oxygen. The chemiluminescence observed during the Fe2+-mediated lipid peroxidation reaction which was not inhibited by either superoxide dismutase or 1,4-diazabicyclo-(2,2,2)-octane, was biphasic: one was a rapid burst; and the other was a slowly increasing emission. The latter portion of the emission of light coincided with the formation of malondialdehyde. These results indicate that in adrenal cortex mitochondria the degradation of cytochrome P-450 is closely related to lipid peroxidation.  相似文献   

6.
Rat liver cytochrome P-450 mediates a novel reaction between equimolar quantities of dissolved oxygen and organic hydroperoxides. The reaction shares some of the properties of both NADPH-O2 dependent hydroxylation and NADPH-O2 independent peroxidase reactions, but does not require either NADPH, phosphatidylcholine, or any substrates other than hydroperoxide and oxygen. It proceeds at a rate approximately 100 times faster than other well known P-450 hydroxylation reactions. Monitoring the rate of O2 consumption in this novel reaction may be a simple and rapid means for studying the kinetics of cytochrome P-450.  相似文献   

7.
The effects of the hydroxylation product 3,4-benzo(a)pyrene and the free radical scavenger 1,2,3-trioxybenzene on cytochrome P-450 degradation in isolated rat hepatocytes induced by the Fe2+-ADP + NADPH system activating lipid peroxidation (LPO) were investigated. During incubation of hepatocytes, cytochrome P-450 is destroyed due to accumulation of LPO products. Addition of the free radical scavenger 1,2,3-trioxybenzene and the monoxygenase substrate 3,4-benzo(a)pyrene to the incubation medium induces inhibition of LPO and simultaneous stabilization of cytochrome P-450. Deceleration of malonic dialdehyde production by the free radical scavenger of the monoxygenase substrate suggests that both the compounds stabilize cytochrome P-450. It is assumed that in liver hepatocytes, exogenous free radical scavengers of the phenolic type and the products of their decarboxylation protect cytochrome P-450 against the LPO-induced destruction via oxidative metabolism of hydrophobic substrates.  相似文献   

8.
The NADPH-dependent lipid peroxidation in human placental mitochondria has been found to be inhibited strongly by amphenone B, aminoglutethimide and carbon monoxide, inhibitors of cytochrome P-450-mediated reactions, but was hardly affected by respiratory chain inhibitors. Cytochrome c, an exogenous electron acceptor which is known to compete with cytochrome P-450 for the reducing equivalents, showed an inhibitory effect on NADPH-dependent lipid peroxidation. The observed NADPH-dependent superoxide generation was also strongly inhibited by amphenone B and aminoglutethimide. Moreover, the lipid peroxidation in placental mitochondria was demonstrated to be stimulated by xanthine/xanthine oxidase added as superoxide generating system. This peroxidation was not affected by amphenone B and aminoglutethimide. On the other hand, the superoxide dismutase was found to inhibit both the xanthine oxidase- and NADPH-dependent lipid peroxidation. These data provide evidence that cytochrome P-450 is involved in NADPH-dependent mitochondrial lipid peroxidation. It is suggested that superoxide liberated from cytochrome P-450, in combination with iron, may be responsible for initiation of NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

9.
The mechanism of steroid hydroxylation in rat liver microsomes has been investigated by employing NaIO4, NaClO2, and various organic hydroperoxides as hydroxylating agents and comparing the reaction rates and steroid products formed with those of the NADPH-dependent reaction. Androstenedione, testosterone, progesterone, and 17beta-estradiol were found to act as good substrates. NaIO4 was by far the most effective hydroxylating agent followed by cumene hydroperoxide, NADPH, NaClO2, pregnenolone 17alpha-hydroperoxide, tert-butyl hydroperoxide, and linoleic acid hydroperoxide. Androstenedione was chosen as the model substrate for inducer and inhibitor studies. The steroid was converted to its respective 6beta-, 7alpha, 15-, and 16alpha-hydroxy derivatives when incubated with microsomal fractions fortified with hydroxylating agent. Evidence for cytochrome P-450 involvement in androstenedione hydroxylation included a marked inhibition by substrates and modifiers of cytochrome P-450 and by reagents which convert cytochrome P-450 to cytochrome P-420. The ratios of the steroid products varied according to the type of hydroxylating agent used and were also modified by in vivo phenobarbital pretreatment. It was suggested that multiple forms of cytochrome P-450 exhibiting different affinities for hydroxylating agent are responsible for these different ratios. Horse-radish peroxidase, catalase, and metmyoglobin could not catalyze androstenedione hydroxylation. Addition of NaIO4, NaClO2, cumene hydroperoxide and other organic hydroperoxides to microsomal suspensions resulted in the appearance of a transient spectral change in the difference spectrum characterized by a peak at about 440 nm and a trough at 420 nm. The efficiency of these oxidizing agents in promoting steroid hydroxylation in microsomes appeared to be related to their effectiveness in eliciting the spectral complex. Electron donors, substrates, and modifiers of cytochrome P-450 greatly diminished the magnitude of the spectral change. It is proposed that NaIO4, NaClO2, and organic hydroperoxides promote steroid hydroxylation by forming a transient ferryl ion (compound I) of cytochrome P-450 which may be the common intermediate hydroxylating species involved in hydroxylations catalyzed by cytochrome P-450.  相似文献   

10.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

11.
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetra-acetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

12.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

13.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

14.
A system, which contains NADPH, purified cytochrome P-450 reductase and adriamycin, produces H2O2, O-2 and adriamycin semiquinone radical with O2 consumption and NADPH oxidation. This system, however, does not promote a peroxidation cleavage of unsaturated phospholipid. On the other hand, ferric ion-ADP-adriamycin-co-ordination complex, which may convert to a perferryl ion-co-ordination complex by an intramolecular electron transfer mechanism in air, acts as a powerful initiator for lipid peroxidation. A similar perferryl ion-co-ordination complex could also be produced from ferric ion-ADP-adriamycin-co-ordination complex after reducing it by NADPH-dependent cytochrome P-450 reductase in air.  相似文献   

15.
In an in vitro system consisting of human term placental mitochondria and an NADPH-generating system plus Fe2+, significant lipid peroxidation was observed along with a concomitant inhibition of progesterone biosynthesis. This inhibition could be markedly blocked by Mn2+, superoxide dismutase and dimethylfuran, inhibitors of NADPH-dependent lipid peroxidation. In addition, it has been found that malondialdehyde formation is accompanied by a corresponding decrease in placental mitochondrial cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of cytochrome P-450 in cell-free systems. These measurements provide the first evidence that the inhibition of progesterone biosynthesis by a NADPH-dependent lipid peroxidation in placental mitochondria is a consequence of cytochrome P-450 degradation due to lipid peroxidation.  相似文献   

16.
We have found that NADPH-dependent lipid peroxidation in bovine adrenal cortex mitochondria is strongly inhibited by paraquat. The site of the inhibition of the lipid peroxidation by paraquat has been examined. Paraquat neither inhibits NADPH-2,6-dichlorophenolindophenol nor NADPH-cytochrome c reductase activities. However, paraquat is able to retard the rate of reduction of cytochrome P-450 by NADPH. The spectrophotometric measurements provide the first evidence that lipid peroxidation in adrenal cortex mitochondria involves cytochrome P-450 and that the inhibitory effect of paraquat on lipid peroxidation is due to reoxidation of reduced cytochrome P-450 by the reagent.  相似文献   

17.
In rat liver submitochondrial particles both NADH and NADPH inhibit lipid peroxidation induced by cumene hydroperoxide. Concomitantly with the inhibition of lipid peroxidation, NADH and NADPH strongly stimulate the peroxidase activity of rat liver submitochondrial particles. Rotenone slightly prevents both the protective effect on malondialdehyde formation and peroxidase activity. The peroxidase activity of rat liver submitochondrial particles was attributed to the NAD(P)H-mediated reduction of mitochondrial cytochrome P-450 which can act upon hydroperoxides, by decomposing them to alcohols.  相似文献   

18.
Cumene hydroperoxide is capable of supporting the aromatic hydroxylation of a variety of compounds in the presence of hepatic microsomes. NADPH and molecular oxygen are not required. Cytochrome P-450 acts as the catalyst and could not be replaced by other hemoproteins. One mole of hydroperoxide is consumed for every mole of substrate hydroxylated. It is suggested that the oxenoid species of cytochrome P-450 involved in microsomal aromatic hydroxylation is present in a form equivalent to the ferryl from.  相似文献   

19.
《Free radical research》2013,47(5-6):419-431
(5-Nitro-2-furfuryliden)amino compounds bearing triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl, triazin-4-yl or related groups (a) stimulated superoxide anion radical generated by rat liver microsomes in the presence of NADPH and oxygen; (b) inhibited the NADPH-dependent, iron-catalyzed microsomal lipid peroxidation; (c) prevented the NADPH-dependent destruction of cytochrome P-450; (d) inhibited the NADPH-dependent microsomal aniline 4-hydroxylase activity; (e) failed to inhibit either the cumenyl hydroperoxide-dependent lipid peroxidation or the aniline-4-hydroxylase activity, except for the benzimidazol-l-yl and the substituted triazol-4-yl derivatives, which produced minor inhibitions. Reducing equivalents enhanced the benzimidazol-l-yl derivative inhibition of the cumenyl hydroperoxide-induced lipid peroxidation. The ESR spectrum of the benzimidazol-l-yl derivative, reduced anaerobically by NADPH-supplemented microsomes, showed characteristic spin couplings. Compounds bearing unsaturated nitrogen heterocycles were always more active than those bearing other groups, such as nifurtimox or nitrofurazone. The energy level of the lowest unoccupied molecular orbital was in fair agreement with the capability of nitrofurans for redox-cycling and related actions. It is concluded that nitrofuran inhibition of microsomal lipid peroxidation and cytochrome P-450-catalyzed reactions was mostly due to diversion of reducing equivalents from NADPH to dioxygen. Trapping of free radicals involved in propagating lipid peroxidation might contribute to the overall effect of the benzimidazol-l-yl and substituted triazol-4-yl derivitives.  相似文献   

20.
Role of cytochrome P-450 in ochratoxin A-stimulated lipid peroxidation.   总被引:2,自引:0,他引:2  
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetraacetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号