首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of Tyr(P)-containing peptides by the use of Fmoc-Tyr(PO3Me2)-OH in Fmoc/solid phase synthesis is complicated since, firstly, piperidine causes cleavage of the methyl group from the -Tyr(PO3Me2)-residue during peptide synthesis and, secondly, harsh conditions are needed for its final cleavage. A very simple method for the synthesis of Tyr(P)-containing peptides using t-butyl phosphate protection is described. The protected phosphotyrosine derivative, Fmoc-Tyr(PO3tBu2)-OH was prepared in high yield from Fmoc-Tyr-OH by a one-step procedure which employed di-t-butyl N,N-diethyl-phosphoramidite as the phosphorylation reagent. The use of this derivative in Fmoc/solid phase peptide synthesis is demonstrated by the preparation of the Tyr(P)-containing peptides, Ala-Glu-Tyr(P)-Ser-Ala and Ser-Ser-Ser-Tyr(P)-Tyr(P).  相似文献   

2.
Src protein-tyrosine kinase contains a myristoylation motif, a unique region, an Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a C-terminal tail. The C-terminal tail contains a Tyr residue, Tyr527. Phosphorylation of Tyr527 triggers Src inactivation, caused by Tyr(P)527 binding to the SH2 domain. In this study, we demonstrated that a conformational contribution, not affinity, is the predominant force for the intramolecular SH2-Tyr(P)527 binding, and we characterized the structural basis for this conformational contribution. First, a phosphopeptide mimicking the C-terminal tail is an 80-fold weaker ligand than the optimal phosphopeptide, pYEEI, and similar to a phosphopeptide containing three Ala residues following Tyr(P) in binding to the Src SH2 domain. Second, the SH2-Tyr(P)527 binding is largely independent of the amino acid sequence surrounding Tyr(P)527, and only slightly decreased by an inactivating mutation in the SH2 domain. Furthermore, even the unphosphorylated C-terminal tail with the sequence of YEEI suppresses Src activity by binding to the SH2 domain. These experiments demonstrate that very weak affinity is sufficient for the SH2-Tyr(P)527 binding in Src inactivation. Third, the effective intramolecular SH2-Tyr(P)527 binding is attributed to a conformational contribution that requires residues Trp260 and Leu255. Although the SH3 domain is essential for Src inactivation by Tyr(P)527, it does not contribute to the SH2-Tyr(P)527 binding. These findings suggest a conformation-based Src inactivation model, which provides a unifying framework for understanding Src activation by a variety of mechanisms.  相似文献   

3.
D(-)beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains essential thiol and carboxyl groups. A tryptic BDH peptide labeled at an essential thiol with [3H]N-ethylmaleimide (NEM), and another tryptic peptide labeled at an essential carboxyl with N,N'-dicyclohexyl [14C]carbodiimide (DCCD), were isolated and sequenced. The peptide labeled with [3H]NEM had the sequence Met.Glu.Ser.Tyr.Cys*.Thr.Ser. Gly.Ser.Thr.Asp.Thr.Ser.Pro.Val.Ile.Lys. The label was at Cys. The same peptide was isolated from tryptic digests of BDH labeled at its nucleotide-binding site with the photoaffinity labeling reagent, arylazido- -[3-3H] alanyl-NAD. These results suggest that the essential thiol of BDH is located at its nucleotide-binding site, and agree with our previous observation that NAD and NADH protect BDH against inhibition by thiol modifiers. The [14C]DCCD-labeled peptide had the sequence Glu.Val.Ala.Glu*.Val. Asn. Leu.Trp.Gly.Thr.Val.Arg. DCCD appeared to modify the glutamic acid residue marked by an asterisk. Sequence analogies between these peptides and other proteins have been discussed.  相似文献   

4.
astMultipin is a trademark of Chiron Technologies Pty. Ltd., Clayton, Victoria, Australia.The efficiency of various coupling methods for the incorporation of the three monobenzyl phosphorodiester-protected derivatives, Fmoc- Tyr(PO3Bzl,H)-OH, Fmoc-Ser(PO3Bzl,H)-OH and Fmoc-Thr(PO3Bzl,H)-OH, was examined through the test synthesis of Ala-Ser-Gln-Gly-Xxx(PO3H2)-Leu- Glu-Asp-Pro-Ala-NH2 (Xxx = Tyr, Ser, Thr) using the Multipin method of multiple peptide synthesis. The coupling methods examined were (1) PyBrop/DIEA; (2) BOP/HOBt/NMM; (3) BOP/HOBt/DIEA; (4) HBTU/HOBt/DIEA; (5) HATU/HOAt/DIEA; (6) HATU/DIEA; (7) DIC/HOBt; (8) DIC/HOBt/DIEA; (9) DIC/HOAt; (10) DIC/HOAt/DIEA. While all four DIC-based coupling procedures resulted in incomplete incorporation, both the HBTU/HOBt/DIEA and HATU/HOAt/DIEA coupling procedures provided most efficient incorporation of the three Fmoc- Xxx(PO3Bzl,H)-OH derivatives. In the subsequent synthesis of the -helical Tyr(P)-peptide, Glu-Thr-Gly-The-Lys- Ala-Glu-Leu-Leu-Ala-Lys-Tyr(PO3H2)-Glu-Ala-Thr- His-Lys-NH2, analysis of the crude peptide by electrospray MS confirmed that several residue deletions had occurred but that complete incorporation of the Tyr(P)-residue had been accomplished using HBTU/HOBt/DIEA coupling of Fmoc- Tyr(PO3Bzl,H)-OH.  相似文献   

5.
A multiplexed peptide quantification strategy using the iTRAQ reagent has been described for relative measurements of peptides in digested protein mixtures. To validate the chemical specificity of the iTRAQ reaction, we have performed a detailed study of iTRAQ reactivity with two sets of synthetic peptides. The first set of peptides had sequences of Tyr-Xaa-Ser-Glu-Gly-Leu-Ser-Lys and Tyr-Xaa-Ser-Glu-Tyr-Leu-Ser-Lys where Xaa = Ala, Pro, Trp, Tyr, or Glu and was designed to study the extent of O-acylation by iTRAQ, especially hydroxyl-containing residues in different positions. The second set of peptides included Ala-Ser-Glu-His-Ala-Xaa-Tyr-Gly where Xaa = Ser, Thr, or Tyr and was selected to investigate the effect of histidyl residues separated by one amino acid residue from seryl, tyrosyl, or threonyl residues. Our findings indicated that, in addition to variable levels of O-acylation of nonsequence-specific hydroxyl-containing residues, significant sequence-specific O-acylation of seryl, threonyl, and tyrosyl hydroxyls occurred when separated one residue removed from a histidyl residue, that is, (Tyr/Ser)-Xaa-His or His-Xaa-(Tyr/Ser/Thr). This behavior was verified by a separate spiking experiment of one of the first set of peptides into Escherichia coli protein extracts, followed by retention time targeted LC-MS/MS to demonstrate the occurrence of modifications in a complex mixture. These sequence-dependent O-acylation modifications can be confounding factors to accurate MS quantification. Reversal of peptide O-acylation by the iTRAQ reagent can be accomplished by reaction with hydroxylamine with virtually no cleavage of N-acylation and is a recommended modification of the iTRAQ protocol for many applications.  相似文献   

6.
Incubation of cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins, accompanied by elevation in their Ser(P)/Thr(P) content and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, selectively prevented the increase in Ser(P)/Thr(P) content of IRS-1, its dissociation from IR, and the decrease in its Tyr(P) content following 60 min of insulin treatment. Four conserved phosphorylation sites within the phosphotyrosine binding/SAIN domains of IRS-1 and IRS-2 served as in vitro substrates for protein kinase B (PKB), a Ser/Thr kinase downstream of phosphatidylinositol 3-kinase. Furthermore, PKB and IRS-1 formed stable complexes in vivo, and overexpression of PKB enhanced Ser phosphorylation of IRS-1. Overexpression of PKB did not affect the acute Tyr phosphorylation of IRS-1; however, it significantly attenuated its rate of Tyr dephosphorylation following 60 min of treatment with insulin. Accordingly, overexpression of IRS-1(4A), lacking the four potential PKB phosphorylation sites, markedly enhanced the rate of Tyr dephosphorylation of IRS-1, while inclusion of vanadate reversed this effect. These results implicate a wortmannin-sensitive Ser/Thr kinase, different from PKB, as the kinase that phosphorylates IRS-1 and acts as the feedback control regulator that turns off insulin signals by inducting the dissociation of IRS proteins from IR. In contrast, insulin-stimulated PKB-mediated phosphorylation of Ser residues within the phosphotyrosine binding/SAIN domain of IRS-1 protects IRS-1 from the rapid action of protein-tyrosine phosphatases and enables it to maintain its Tyr-phosphorylated active conformation. These findings implicate PKB as a positive regulator of IRS-1 functions.  相似文献   

7.
In C(4) plants such as maize, pyruvate,orthophosphate dikinase (PPDK) catalyzes the regeneration of the initial carboxylation substrate during C(4) photosynthesis. The primary catalytic residue, His-458 (maize C(4) PPDK), is involved in the ultimate transfer of the beta-phosphate from ATP to pyruvate. C(4) PPDK activity undergoes light-dark regulation in vivo by reversible phosphorylation of a nearby active-site residue (Thr-456) by a single bifunctional regulatory protein (RP). Using site-directed mutagenesis of maize recombinant C(4) dikinase, we made substitutions at the catalytic His residue (H458N) and at this regulatory target Thr (T456E, T456Y, T456F). Each of these affinity-purified mutant enzymes was assayed for changes in dikinase activity. As expected, substituting His-458 with Asn results in a catalytically incompetent enzyme. Substitutions of the Thr-456 residue with Tyr and Phe reduced activity by about 94 and 99%, respectively. Insertion of Glu at this position completely abolished activity, presumably by the introduction of negative charge proximal to the catalytic His. Furthermore, neither the T456Y nor inactive H458N mutant enzyme was phosphorylated in vitro by RP. The inability of the former to serve as a phosphorylation substrate indicates that RP is functionally a member of the Ser/Thr family of protein kinases rather than a "dual-specificity" Ser-Thr/Tyr kinase, since our previous work showed that RP effectively phosphorylated Ser inserted at position 456. The inability of RP to phosphorylate its native target Thr residue when Asn is substituted for His-458 documents that RP requires the His-P catalytic intermediate form of PPDK as its protein substrate. For these latter studies, synthetic phosphopeptide-directed antibodies specific for the Thr(456)-P form of maize C(4) PPDK were developed and characterized.  相似文献   

8.
The presence of l-5,5-dimethylproline (dmP) within an amino acid sequence results in the formation of an X-dmP peptide bond predominantly locked in a cis conformation. However, the common use of this unnatural amino acid has been hampered by the difficulty of the economical incorporation of the dmP residue into longer peptide segments due to the steric hindrance imposed by the dimethyl moieties. Here, we describe synthesis of the C-terminal 36-residue peptide, corresponding to the 89-124 sequence of bovine pancreatic ribonuclease A (RNase A), in which dmP is incorporated as a substitute for Pro93. The peptide was assembled by condensation of protected 5- and 31-residue peptide fragments, which were synthesized by solid-phase peptide methodology using fluorenylmethyloxycarbonyl chemistry. We focused on optimizing the synthesis of the Fmoc-Ser(tBu)-Ser(tBu)-Lys(Boc)-Tyr(tBu)-dmP-OH pentapeptide (residues 89-93) with efficient acylation of the sterically hindered dmP residue. In a comparative study, the reagent O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate was found to be superior to bromo-tris-pyrrolidino-phosphonium hexafluorophosphate and tetramethylfluoroformamidinium hexafluorophosphate for the synthesis of the -Tyr(tBu)-dmP- peptide bond in solution as well as on a resin.  相似文献   

9.
The primary specificity residue of a substrate or an inhibitor, called the P(1) residue, is responsible for the proper recognition by the cognate enzyme. This residue enters the S(1) pocket of the enzyme and establishes contacts (up to 50%) inside the proteinase substrate cavity, strongly affecting its specificity. To analyze the influence on bovine alpha-chymotrypsin substrate activity, aromatic non-proteinogenic amino acid residues in position P(1) with the sequence Ac-Phe-Ala-Thr-X-Anb(5,2)-NH(2) were introduced: L-pyridyl alanine (Pal), 4-nitrophenylalanine - Phe(p-NO(2)), 4-aminophenylalanine - Phe(p-NH(2)), 4-carboxyphenylalanine Phe(p-COOH), 4-guanidine phenylalanine - Phe(p-guanidine), 4-methyloxycarbonyl-phenylalanine - Phe(p-COOMe), 4-cyanophenylalanine - Phe(p-CN), Phe, Tyr. The effect of the additional substituent at the phenyl ring of the Phe residue was investigated. All peptides contained an amide of 5-amino-2-nitrobenzoic acid, which served as a chromophore. Kinetic parameters (k(cat), K(M) and k(cat)/K(M)) of the peptides synthesized with bovine alpha-chymotrypsin were determined. The highest value of the specificity constant k(cat)/K(M), reaching 6.0 x 10(5) [M(-1)xs(-1)], was obtained for Ac-Phe-Ala-Thr-Phe(p-NO(2))-Anb(5,2)-NH(2). The replacement of the acetyl group with benzyloxycarbonyl moiety yielded a substrate with the value of k(cat) more than three times higher. Peptide aldehydes were synthesized with selected residues (Phe, Pal, Tyr, Phe(p-NO(2)) in position P(1) and potent chymotrypsin inhibitors were obtained. The dissociation constant (K(i)) with the experimental enzyme determined for the most active peptide, Tos-Phe-Ala-Thr-Phe(p-NO(2))-CHO, amounted to 1.12 x 10(-8) M.  相似文献   

10.
The success of solid-phase peptide synthesis is often dependent upon solvation of the resin and the growing resin-bound peptide chain. We investigated the relationship between solvent properties and solvation of the resin and peptide-resin in order to obtain satisfactory coupling yields for the rapid solid-phase peptide synthesis, using butyloxycarbonyl-(Boc)-amino acid derivatives, of human-alpha-calcitonin gene-related peptide(8-37) (CGRP(8-37)). Solvation of (p-methylbenzhydrylamine)copoly(styrene-1% divinylbenzene (DVB) (resin) and resin covalently bound to the fully protected amino acid sequence of CGRP(8-37) (peptide-resin) was correlated to solvent Hildebrand solubility (delta) and hydrogen-bonding (delta(h)) parameters. Contour solvation plots of delta(h) vs. delta revealed maximum solvation regions of resin and peptide-resin. Maximum resin solvation occurred with N-methylpyrrolidinone (NMP), NMP : dimethylsulfoxide (DMSO) (8 : 2) and DMSO. Inefficient solvation of the peptide-resin occurred with these solvents and resulted in poor syntheses with average coupling yields of 78.1, 88.9 and 91.8%, respectively. Superior peptide-resin solvation was obtained using dimethylacetamide (DMA) and dimethylformamide (DMF), resulting in significantly higher average coupling yields of 98.0 and 99.5%, respectively. Thus, the region of maximum peptide-resin solvation shifts to solvents with higher delta(h) values. DMF provided the most effective peptide-resin solvation and was the only solvent from which CGRP(8-37) was obtained as a single major product in the crude cleaved material.  相似文献   

11.
Cyclin-dependent kinase (CDK) Tyr15 phosphorylation plays a major role in regulating G(2)/M CDKs, but the role of this phosphorylation in regulating G(1)/S CDKs is less clear. We have studied the regulation and function of Cdc2-Tyr15 phosphorylation in the fission yeast Schizosaccharomyces pombe G(1)/S CDK Cig2/Cdc2. This complex is subject to high level Cdc2-Tyr15 phosphorylation inhibiting its kinase activity in hydroxyurea-treated cells blocked in S-phase. We show that this Tyr15 phosphorylation is required to maintain efficient mitotic checkpoint arrest, because Cig2 accumulates during the block and this accumulation can advance mitotic onset. This mitotic induction operates, at least in part, through activation of the normal G(2)/M CDK complex Cdc13/Cdc2. Thus, Tyr15 phosphorylation of G(1)/S CDK complexes is important in the checkpoint control blocking mitotic onset when DNA replication is inhibited.  相似文献   

12.
Ma H  Lewis D  Xu C  Inesi G  Toyoshima C 《Biochemistry》2005,44(22):8090-8100
Twenty five amino acids within the "N", "P", and "A" domains of the Ca(2+) ATPase (SERCA1) headpiece were subjected to site directed mutagenesis, taking advantage of a high yield expression system. Functional and conformational effects of mutations were interpreted systematically in the light of the high resolution WT structure, defining direct involvement in catalysis as well as in stabilization of various positions acquired by each domain upon substrate binding and utilization. Amino acids involved in binding of ATP (such as Phe487 and Arg560 in the N domain) or phosphate (such as Asp351, Thr625, Lys684, and Thr353 in the P domain) were characterized with respect to their binding mechanism. Further identified were "positional" roles of several amino acids that stabilize neighboring residues for optimal binding of substrate or Mg(2+), or interface between headpiece domains as they change their relative positions in the course of the catalytic cycle. These include cross-linking of the "N" and "P" domains (e.g., Arg560/Asp627 salt bridge to stabilize domain approximation by ATP binding), and stabilization of the "A", "N", and activated "P" domains in arrangements differing from the ground E2 state and driven by catalytic events. This stabilization is produced through hydrogen bonds at domain interfaces, which vary depending on the intermediate state (e.g., Glu486/T171 in E1P and E2P, as opposed to Glu486/H190 in E2). We demonstrate that specific arrangements of the headpiece domains shown in crystal structures are, in fact, required to trigger displacement of transmembrane segments during the enzyme cycle in solution, allowing long range linkage of catalytic and Ca(2+) binding functions.  相似文献   

13.
The main peptidase PN/cutting Tyr8-Gly9 or Gly9-Leu10 bond (of sequence Glp6-Phe7-Tyr8-Gly9-Leu10-MetNH2) seems to be, at least in part, cysteine type enzyme. Cutting of Phe7-Tyr8 bond with PC enzyme is apparently negligible. Further degradation of labelled PN products seems to be accomplished with PI, being serine enzyme at least in part. Metalloenzymes, including "enkephalinase", seem to be of minor importance in hexapeptide degradation, at least in its very low concentration. Some typical inhibitors enhance the degradation what might be explained assuming that products of action of one peptidase strongly inhibit the other peptidase's action. Namely, products of PN and PI seem to inhibit PC except the hippocampal synaptosomes where the opposite is true.  相似文献   

14.
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.  相似文献   

15.
Protein kinase casein kinase-2 (CK2) is a spontaneously active, ubiquitous, and pleiotropic enzyme that phosphorylates seryl/threonyl residues specified by multiple negatively charged side chains, the one at position n + 3 being of crucial importance (minimum consensus S/T-x-x-E/D/S(P)/T(P). Recently CK2 has been reported to catalyze phosphorylation of the yeast nucleolar immunophilin Fpr3 at a tyrosyl residue (Tyr(184)) fulfilling the consensus sequence of Ser/Thr substrates (Wilson, L.K., Dhillon, N., Thorner, J., and Martin, G.S. (1997) J. Biol. Chem. 272, 12961-12967). Here we show that, by contrast to other tyrosyl peptides fulfilling the consensus sequence for CK2, a peptide reproducing the sequence around Fpr3 Tyr(184) (DEDADIY(184)DEEDYDL) is phosphorylated by CK2, albeit with much higher K(m) (384 versus 4. 3 microM) and lower V(max) (8.4 versus 1,132 nmol.min(-1).mg(-1)) than its derivative with Tyr(184) replaced by serine. The replacement of Asp at position n + 1 with alanine and, to a lesser extent, of Ile at n - 1 with Asp are especially detrimental to tyrosine phosphorylation as compared with serine phosphorylation, which is actually stimulated by the Ile to Asp modification. In contrast the replacement of Glu at n + 3 with alanine almost suppresses serine phosphorylation but not tyrosine phosphorylation. It can be concluded that CK2 is capable to phosphorylate, under special circumstances, tyrosyl residues, which are specified by structural features partially different from those that optimize Ser/Thr phosphorylation.  相似文献   

16.
A series of peptides and phosphopeptides corresponding to the auto-phosphorylation site of pp60src, -Asn-Glu-Tyr416-Thr-Ala-, were prepared by either Boc/solution or Fmoc/solid phase peptide synthesis and used as substrates to study their enzymatic phosphorylation by various casein kinases. The Tyr(P)-containing peptide, Asn-Glu-Tyr(P)-Thr-Ala, was prepared by the use of Fmoc-Tyr(PO3Bzl2)-OH in Fmoc/solid phase peptide synthesis followed by acidolytic treatment of the peptide-resin with 5% anisole/CF3CO2H. Both Asn-Glu-Tyr-Thr-Ala and Asn-Glu-Ser(P)-Thr-Ala were prepared by the Boc/solution phase peptide synthesis and employed hydrogenolytic deprotection of the protected peptides. Enzymatic phosphorylation studies established that (A) the Tyr residue acted as an unusual positive determinant for directing phosphorylation to the Thr-residue, (B) the rate of Thr-phosphorylation was markedly facilitated by a change from the Tyr-residue to the Tyr(P)-residue, and (C) a Ser(P)-residue was as effective as the Tyr(P)-residue in facilitating Thr-phosphorylation. A subsequent structure-function study using Asn-Glu-Phe-Thr-Ala, Asn-Glu-Tyr(Me)-Thr-Ala (prepared by Fmoc/solid phase peptide synthesis) and Asn-Glu-Cha-Thr-Ala (prepared by hydrogenation of Asn-Glu-Tyr-Thr-Ala) established that the rate of Thr-phosphorylation was influenced by the extent of hydrophobic-hydrophobic interactions by the aralkyl side-chain group (either aromatic or aliphatic) of the 416-residue with casein kinase-2; the rate of Thr-phosphorylation being decreased by the introduction of methyl or hydroxyl groups at the 4-position of the aromatic group {i.e. Tyr(Me) and Tyr respectively} but enhanced by the introduction of the hydrophilic phosphate group {i.e. as Tyr(P)}.  相似文献   

17.
Chitinase isolated from Zea mays seeds is inactivated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in the absence of exogenous nucleophiles. Oligomers of N-acetylglucosamine,N,N',N",N"'-tetra-N-acetylchitotetraose (GlcNAc4), and to a lesser extent, N,N',N"-tri-N-acetylchitotriose (GlcNAc3) and N,N'-di-N-acetylchitobiose (GlcNAc2) provide partial protection against inactivation by the reagent. An examination of the concentration dependence of the protection afforded by GlcNAc4 revealed direct competition between the substrate analog and the reagent for the same binding sites on the enzyme. Isolation and Edman degradation of a "new" tryptic fragment, observed after inactivation of chitinase with EDC, revealed the sequence G-P-L-Q-I-S-W-N-*-N-Y-G-P-A-G-R, where the asterisk represents a cycle in which no amino acid was detected, presumably as a consequence of derivatization with EDC. In basic chitinases from dicotyledonous plants such as Arabidopsis thaliana, Phaseolis vulgaris (bean), Nicotiana tabacum (tobacco), and Solanum tuberosum (potato), as well as in the chitinase isolated from the monocotyledonous plant Hordeum vulgare (barley), this position is invariably occupied by a tyrosine. However, in the Oryza sativa (rice) basic chitinase, this position is occupied by a phenylalanine. The following additional evidence supports identification of this residue as tyrosine in Z. mays chitinase. (a) Inactivation of chitinase with EDC is reversible by treatment with hydroxylamine. (b) Liquid secondary ion mass spectrometric analysis of the isolated derivatized peptide revealed the presence of a molecular ion with a mass to charge ratio consistent with the peptide containing a derivatized tyrosine residue. These results provide evidence for an essential tyrosine residue at or near the catalytic site of chitinase that is selectively modified during inactivation with EDC.  相似文献   

18.
Sulfated tyrosine [Tyr(SO3H)]-containing peptides showed characteristic peak patterns in their liquid secondary-ion mass spectrometry (LSIMS) spectra. Protonated molecules were desulfated more easily than their deprotonated counterparts. Therefore, the stabilities of the Tyr(SO3H) residues were well-reflected by peak patterns in their positive-ion spectra. These intrinsic peak patterns were investigated by comparing the behavior of each Tyr(SO3H) residue in acidic solution. As the peptide chain was lengthened and the number of cationic functional groups increased, the peak representing the [MH]+ of a Tyr(SO3H)-containing peptide became more prominent than that representing the desulfated [MH-SO3]+. These alterations in peptide structure also increased the stability of the Tyr(SO3H) residue in acidic solution. Based on the desulfation mechanism of an aryl monosulfate, we predicted that intramolecular cationic functional groups would stabilize Tyr(SO3H) residues by forming conjugate acid-base pairs (or salt bridges) both in the gaseous phase and in acidic solution. In accordance with this theory, Arg residues would take primary responsibility for this self-stabilization within Tyr(SO3H)-containing peptides. Moreover, a long peptide backbone was expected to have a weak protective effect against desulfation of the [MH]+ in the gaseous phase. Tyr(SO3H) residues were also stabilized by adding an external basic peptide containing multiple Arg residues. Formation of such intermolecular acid-base pairs was demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) which detected conjugated peptide ions. The energetically favorable formation of conjugate acid-base pairs prompted by Tyr(SO3H) residues might be a driving force for protein folding and protein-protein interaction.  相似文献   

19.
The conformation of [Tyr(8)]SP (Y8SP) in dimethylsulfoxide (DMSO), water, and dipalmitoyl phosphatidylcholine (DPPC) bilayers has been investigated by two-dimensional nmr and molecular dynamics simulations. Molecular modeling of the conformation of Y8SP by incorporating nuclear Overhauser effects as distance restraints shows wide differences in its conformation in the three media. In DMSO, the main structural features are gamma-bends along with a nonspecific bend around Gln(6)-Phe(7)-Tyr(8). The random coil structure seen in water is transformed into a beta-turn around the segment Gln(5)-Gln(6)-Phe(7)-Tyr(8) when Y8SP is incorporated into DPPC bilayers. The lower biological activity of Y8SP compared to the native peptide (SP) has been attributed to the absence of any helix like structure at the central residues, a feature shown to be an important prerequisite for SP and SP agonists to bind to the neurokinin 1 tachykinin receptor.  相似文献   

20.
The reagent pentafluorophenyl S-acetylmercaptoacetate was used to modify the N-terminus of resin-bound side-chain-protected peptides. The modification was carried out in an automated cycle in the final stage of fluorenylmethoxycarbonyl (Fmoc)/polyamide-mediated solid-phase synthesis. Side-chain deprotection and cleavage from the resin with aqueous trifluoroacetic acid gave the N-(S-acetylmercaptoacetyl) peptides. The S-acetylmercaptoacetyl peptides were transformed into reactive thiol-containing peptides by incubation with hydroxylamine at neutral pH. The S-deacetylation was performed in the presence of a sulfhydryl-reactive compound (or intramolecular group) to enable immediate capture of the sensitive thiol. Three applications were investigated. An S-acetylmercaptoacetyl peptide, containing a sequence of a meningococcal membrane protein, was incubated with hydroxylamine in the presence of 5-(iodoacetamido)fluorescein to give the corresponding fluorescein-labeled peptide in 62% yield. The same peptide was also S-deacetylated in the presence of bromoacetylated poly-L-lysine to afford a peptide/polylysine conjugate. Finally, a peptide corresponding to a sequence of herpes simplex virus glycoprotein D was prepared. This peptide, containing an N-terminal-S-acetylmercaptoacetyl group and an additional C-terminal S-(3-nitro-2-pyridinesulfenyl)cysteine residue, was converted into a cyclic disulfide peptide (20%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号