首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
hhLIM是LIM蛋白家族成员之一,该蛋白质含有两个LIM结构域,在基因表达调节、细胞骨架组构及细胞肥大过程中发挥重要作用.构建hhLIM不同LIM结构域的突变体,探讨其两个LIM结构域在与actin相互结合中的作用及其可能机制.GST-pull down和hhLIM及其突变体与actin细胞定位关系的免疫荧光分析结果表明,C端的LIM结构域2是hhLIM与actin结合所必需的,该结构域中的两个Cys置换为Ser后可使hhLIM结合actin的功能完全丧失,N端的LIM结构域1突变使hhLIM结合actin的能力下降.F-actin交联实验结果显示,hhLIM通过LIM结构域2与actin直接结合并起到交联F-actin的作用.结果表明,LIM结构域2在hhLIM与actin相互作用及调节actin细胞骨架组构中起决定性作用.  相似文献   

2.
3.
Gastrins, cholecystokinins and gastrointestinal cancer   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
6.
Zheng B  Wen JK  Han M 《The FEBS journal》2008,275(7):1568-1578
Human heart LIM protein (hhLIM) is a newly cloned protein. In vitro analyses showed that green fluorescent protein (GFP)-tagged hhLIM protein accumulated in the cytoplasm of C2C12 cells and colocalized with F-actin, indicating that hhLIM is an actin-binding protein in C2C12 cells. Overexpression of hhLIM-GFP in C2C12 cells significantly stabilized actin filaments and delayed depolymerization of the actin cytoskeleton induced by cytochalasin B treatment. Expression of hhLIM-GFP in C2C12 cells also induced significant changes in the organization of the actin cytoskeleton, specifically, fewer and thicker actin bundles than in control cells, suggesting that hhLIM functions as an actin-bundling protein. This hypothesis was confirmed using low-speed co-sedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of hhLIM. hhLIM has two LIM domains. To identify the essential regions and sites for association, a series of truncated mutants was constructed which showed that LIM domain 2 has the same activity as full-length hhLIM. To further characterize the binding sites, the LIM domain was functionally destructed by replacing cysteine with serine in domain 2, and results showed that the second LIM domain plays a central role in bundling of F-actin. Taken together, these data identify hhLIM as an actin-binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

7.
hhlim (humanheartlim)是从人胎心cDNA文库中筛选克隆的一个新基因 ,作为LIM家族的新成员参与心肌肥大的发生发展过程 .为了进一步研究hhLIM在心肌肥大发生过程中的作用 ,以C2C12细胞为研究对象 ,以心肌肥大强效刺激因子内皮素 1(ET 1)为诱导因素 ,探讨hhLIM与肌动蛋白的相互作用及其影响细胞骨架的分子机制 .RT PCR、Western印迹和细胞免疫荧光分析结果表明 ,心肌肥大刺激因子ET 1在诱导心肌肥大标志基因BNP和肌动蛋白表达的同时 ,使hhLIM蛋白在C2C12细胞胞核与胞质之间进行重新定位 .激光共聚焦显微镜观察结果显示 ,hhLIM与肌动蛋白在胞质中共定位 .蛋白分步提取、鉴定及hhLIM与F肌动蛋白结合与沉降实验证明 ,hhLIM多存在于细胞骨架及其相关蛋白部分 ,在体外可与F肌动蛋白共结合 .这些结果表明 ,胞质中的hhLIM作为细胞骨架相关蛋白与肌动蛋白相互作用 .进一步研究hhLIM与细胞骨架的关系时发现 ,hhLIM过表达可使C2C12细胞的骨架变成致密网状纤维并使其对细胞松弛素导致的细胞骨架解聚产生一定的抵抗作用 ,抑制hhLIM表达则使细胞骨架稀疏 ,结构模糊 .提示hhLIM参与细胞骨架组织及重构的机制与其结合并稳定F肌动蛋白有关 .  相似文献   

8.
9.
10.
11.
12.
13.
The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle   总被引:8,自引:0,他引:8  
We have determined the complete mRNA sequence of FHL3 (formerly SLIM2). We have confirmed that it is a member of the family of LIM proteins that share a similar secondary protein structure, renamed as Four-and-a-Half-LIM domain (or FHL) proteins in accordance with this structure. The "half-LIM" domain is a single zinc finger domain that may represent a subfamily of LIM domains and defines this particular family of LIM proteins. The distribution of FHL mRNA expression within a variety of murine tissues is complex. Both FHL1 and FHL3 were expressed in a number of skeletal muscles while FHL2 was expressed at high levels in cardiac muscle. Localisation of FHL3 to human chromosome 1 placed this gene in the proximity of, but not overlapping with, alleles associated with muscle diseases. FHL1 and FHL3 mRNAs were reciprocally expressed in the murine C2C12 skeletal muscle cell line and this suggested that the pattern of expression was linked to key events in myogenesis.  相似文献   

14.
15.
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the “stressed” cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs’ signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.  相似文献   

16.
Molecular dissection of a LIM domain.   总被引:14,自引:3,他引:11       下载免费PDF全文
LIM domains are novel sequence elements that are found in more than 60 gene products, many of which function as key regulators of developmental pathways. The LIM domain, characterized by the cysteine-rich consensus CX2CX16-23HX2CX2CX2CX16-21 CX2-3(C/H/ D), is a specific mental-binding structure that consists of two distinct zinc-binding subdomains. We and others have recently demonstrated that the LIM domain mediates protein-protein interactions. However, the sequences that define the protein-binding specificity of the LIM domain had not yet been identified. Because structural studies have revealed that the C-terminal zinc-binding module of a LIM domain displays a tertiary fold compatible with nucleic acid binding, it was of interest to determine whether the specific protein-binding activity of a LIM domain could be ascribed to one of its two zinc-binding subdomains. To address this question, we have analyzed the protein-binding capacity of a model LIM peptide, called zLIM1, that is derived from the cytoskeletal protein zyxin. These studies demonstrate that the protein-binding function of zLIM1 can be mapped to sequences contained within its N-terminal zinc-binding module. The C-terminal zinc-binding module of zLIM1 may thus remain accessible to additional interactive partners. Our results raise the possibility that the two structural subdomains of a LIM domain are capable of performing distinct biochemical functions.  相似文献   

17.
18.
19.
Li A  Ponten F  dos Remedios CG 《Proteomics》2012,12(2):203-225
LIM domain proteins all contain at least one double zinc-finger motif. They belong to a large family and here we review those expressed mainly in mammalian hearts, but particularly in cardiomyocytes. These proteins contain between one and five LIM domains and usually these proteins contain other domains that have specific functions such as actin-binding, kinases and nuclear translocation motifs. While several recent reviews have summarised the importance of individual LIM domain proteins, this is the first review of its kind to cover all LIMs associated with the heart. Here we examine 33 LIM proteins (including three that bind to, but do not themselves contain, LIM domains) that are implicated in either the development of the heart, heart disorders and failure, or both. Our analysis is consistent with the view that cardiac LIM domain proteins form multiple extensive networks of multi-protein complexes within the myocardium. This multiplicity of binding partners probably protects the heart as it is challenged to maintain cardiac output, until the imbalance reaches a turning point that results in failure. We believe that the complexity of LIM interactions is properly described by the term LIM interactome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号