首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNA editing affects messenger RNAs and transfer RNAs in plant mitochondria by site-specific exchange of cytidine and uridine bases in both seed and nonseed plants. Distribution of the phenomenon among bryophytes has been unclear since RNA editing has been detected in some but not all liverworts and mosses. A more detailed understanding of RNA editing in plants required extended data sets for taxa and sequences investigated. Toward this aim an internal region of the mitochondrial nad5 gene (1104 nt) was analyzed in a large collection of bryophytes and green algae (Charales). The genomic nad5 sequences predict editing in 30 mosses, 2 hornworts, and 7 simple thalloid and leafy liverworts (Jungermanniidae). No editing is, however, required in seven species of the complex thalloid liverworts (Marchantiidae) and the algae. RNA editing among the Jungermanniidae, on the other hand, reaches frequencies of up to 6% of codons being modified. Predictability of RNA editing from the genomic sequences was confirmed by cDNA analysis in the mosses Schistostega pennata and Rhodobryum roseum, the hornworts Anthoceros husnotii and A. punctatus, and the liverworts Metzgeria conjugata and Moerckia flotoviana. All C-to-U nucleotide exchanges predicted to reestablish conserved codons were confirmed. Editing in the hornworts includes the removal of genomic stop codons by frequent reverse U-to-C edits. Expectedly, no RNA editing events were identified by cDNA analysis in the marchantiid liverworts Ricciocarpos natans, Corsinia coriandra, and Lunularia cruciata. The findings are discussed in relation to models on the phylogeny of land plants. Received: 2 April 1998 / Accepted: 4 August 1998  相似文献   

2.
3.
Direct sequencing of cytochrome oxidase subunit III (coxIII) mRNA with a specific primer confirms RNA editing in sunflower (Helianthus annus) mitochondria. Six instances of mRNA editing could be verified, one of these specific to this species. All the editing events involve C to U transitions in the coxIII mRNA causing codon changes that lead to amino acids better conserved in evolution than those encoded in the genomic DNA. This observation confirms RNA editing to be widespread in higher plant mitochondria.  相似文献   

4.
5.
3′-Terminal uridylyl transferases (TUTases) selectively bind uridine 5′-triphosphate (UTP) and catalyze the addition of uridine 5′-monophosphate to the 3′-hydroxyl of RNA substrates in a template-independent manner. RNA editing TUTase 1 and RNA editing TUTase 2 (RET2) play central roles in uridine insertion/deletion RNA editing, which is an essential part of mitochondrial RNA processing in trypanosomes. Although the conserved N-terminal (catalytic) domain and C-terminal (nucleotide base recognition) domain are readily distinguished in all known TUTases, nucleotide specificity, RNA substrate preference, processivity, quaternary structures, and auxiliary domains vary significantly among enzymes of divergent biological functions. RET2 acts as a subunit of the RNA editing core complex to carry out guide-RNA-dependent U-insertion into mitochondrial mRNA. By correlating mutational effects on RET2 activity as recombinant protein and as RNA editing core complex subunit with RNAi-based knock-in phenotypes, we have assessed the UTP and RNA binding sites in RET2. Here we demonstrate functional conservation of key UTP-binding and metal-ion-coordinating residues and identify amino acids involved in RNA substrate recognition. Invariant arginine residues 144 and 435 positioned in the vicinity of the UTP binding site are critical for RET2 activity on single-stranded and double-stranded RNAs, as well as function in vivo. Recognition of a double-stranded RNA, which resembles a guide RNA/mRNA duplex, is further facilitated by multipoint contacts across the RET2-specific middle domain.  相似文献   

6.
7.
Plant Functional Diversity and Species Diversity in the Mongolian Steppe   总被引:1,自引:0,他引:1  

Background

The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated.

Methodology/Principal Findings

In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity.

Conclusions/Significance

These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought.  相似文献   

8.
Regulated point modification by an RNA editing enzyme occurs at four conserved sites in the Drosophila Shaker potassium channel. Single mRNA molecules can potentially represent any of 24 = 16 permutations (isoforms) of these natural variants. We generated isoform expression profiles to assess sexually dimorphic, spatial, and temporal differences. Striking tissue-specific expression was seen for particular isoforms. Moreover, isoform distributions showed evidence for coupling (linkage) of editing sites. Genetic manipulations of editing enzyme activity demonstrated that a chief determinant of Shaker editing site choice resides not in the editing enzyme, but rather, in unknown factors intrinsic to cells. Characterizing the biophysical properties of currents in nine isoforms revealed an unprecedented feature, functional epistasis; biophysical phenotypes of isoforms cannot be explained simply by the consequences of individual editing effects at the four sites. Our results unmask allosteric communication across disparate regions of the channel protein and between evolved and regulated amino acid changes introduced by RNA editing.  相似文献   

9.
10.
在植物线粒体和叶绿体转录本上,数百个胞嘧啶(C)位点经脱氨基反应变为尿嘧啶(U),这是一种在转录本水平上对遗传信息进行修饰或调控的机制.在植物细胞器中,RNA编辑过程需要不同家族的RNA编辑因子相互作用组装成复杂的编辑复合体,特异地识别编辑位点进行编辑.最初的研究发现,植物RNA编辑受到高特异性五环肽重复(pentatricopeptide repeat, PPR)蛋白的调控,目前在植物中发现400多种PPR家族蛋白,编辑作用复杂.之后对RNA编辑因子互作蛋白/多细胞器RNA编辑因子(RNA editing factor interacting proteins /multiple organellar RNA editing factors,RIP/MORF),细胞器RNA识别基序(organelle RNA recognition motif,ORRM),细胞器锌指蛋白(organelle zinc-finger,OZ)等的研究表明,这些非PPR蛋白组分可以与PPR蛋白形成编辑复合体,共同参与编辑,且RNA编辑复合体具有多样性.RNA编辑因子的缺失会引起植物的生长发育受阻,果实成熟延迟等,对RNA编辑因子的研究显得尤为重要.对植物中RNA编辑因子的功能及其作用机制研究进展进行综述,旨在为后续RNA编辑的研究提供一定的参考.  相似文献   

11.
12.
13.
14.
15.
Molecular Biology - CRISPR/Cas technology of genome editing is a powerful tool for making targeted changes in the DNA of various organisms, including plants. The choice of the precise nucleotide...  相似文献   

16.
RNA编辑被认为是生命体一种新的基因加工与修饰现象,是指DNA转录成RNA后除RNA剪切外的其他加工过程,以核苷酸的删除、插入或替换等方式改变遗传信息,揭示生物进化过程中基因修饰和调控的另一个重要途径,是对中心法则的重要补充.而RNAi是一种由dsRNA介导的,在转录水平、转录后水平和翻译水平上阻断基因表达的基因调节途径.着重介绍 RNA编辑功能、RNA编辑与RNA干扰关系.  相似文献   

17.
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5′ end of the mRNA 3′ cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive + 1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the + 1 extended 5′ cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.  相似文献   

18.
RNA编辑普遍存在于高等植物线粒体中,是线粒体产生功能蛋白所必不可少的过程。以红莲(HL)型水稻细胞质雄性不育系粤泰A、保持系粤泰B及杂种红莲优6四分体时期的花药、单核花粉和二核花粉为材料,研究了线粒体功能基因———atp6、coxⅡ及嵌合基因orfH79转录本的编辑位点。结果表明,atp6转录本的编辑能力明显受到恢复基因的影响。atp6转录本在不育系中不被编辑或部分编辑,而在引入了恢复基因的杂种一代中,其编辑能力均大幅提高。coxⅡ转录本在3个材料中编辑状态没有差别,而嵌合基因orfH79在各个材料中均不被编辑。由此推测,红莲型水稻细胞质雄性不育与atp6转录本编辑能力的基本丧失紧密相关。  相似文献   

19.
20.
Plant-pollinator coextinctions are likely to become more frequent as habitat alteration and climate change continue to threaten pollinators. The consequences of the resulting collapse of plant communities will depend partly on how quickly plant functional and phylogenetic diversity decline following pollinator extinctions. We investigated the functional and phylogenetic consequences of pollinator extinctions by simulating coextinctions in seven plant-pollinator networks coupled with independent data on plant phylogeny and functional traits. Declines in plant functional diversity were slower than expected under a scenario of random extinctions, while phylogenetic diversity often decreased faster than expected by chance. Our results show that plant functional diversity was relatively robust to plant-pollinator coextinctions, despite the underlying rapid loss of evolutionary history. Thus, our study suggests the possibility of uncoupled responses of functional and phylogenetic diversity to species coextinctions, highlighting the importance of considering both dimensions of biodiversity explicitly in ecological studies and when planning for the conservation of species and interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号