首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
SHOT: a web server for the construction of genome phylogenies   总被引:23,自引:0,他引:23  
With the increasing availability of genome sequences, new methods are being proposed that exploit information from complete genomes to classify species in a phylogeny. Here we present SHOT, a web server for the classification of genomes on the basis of shared gene content or the conservation of gene order that reflects the dominant, phylogenetic signal in these genomic properties. In general, the genome trees are consistent with classical gene-based phylogenies, although some interesting exceptions indicate massive horizontal gene transfer. SHOT is a useful tool for analysing the tree of life from a genomic point of view. It is available at http://www.Bork.EMBL-Heidelberg.de/SHOT.  相似文献   

2.
Background: The evolutionary relationships between archaebacteria, eubacteria and eukaryotic cells are of central importance in biology. The current view is that each of these three groups of organisms constitutes a monophyletic domain, and that eukaryotic cells have evolved from an archaebacterial ancestor. Recent studies on a number of highly conserved protein sequences do not, however, support this view and raise important questions concerning the evolutionary relationships between all extant organisms, particularly regarding the origin of eukaryotic cells.Results We have used sequences of 70 kD heat shock protein (hsp70) — the most conserved protein found to date in all species — to examine the evolutionary relationship between various species. We have obtained two new archaebacterial hsp70 sequences from the species, Thermoplasma acidophilum and Halobacterium cutirubrum. A global comparison of hsp70 sequences, including our two new sequences, shows that all known archaebacterial homologs share a number of sequence signatures with the Gram-positive group of bacteria that are not found in any other prokaryotic or eukaryotic species. In contrast, the eukaryotic homologs are shown to share a number of unique sequence features with the Gram-negative bacteria that are not present in any archaebacteria. Detailed phylogenetic analyses of hsp70 sequences strongly support a specific evolutionary relationship between archaebacteria and Gram-positive bacteria on the one hand, and Gram-negative bacteria and eukaryotes on the other. The phylogenetic analyses also indicate a polyphyletic branching of archaebacteria within the Gram-positive species. The possibility that the observed relationships are due to horizontal gene transfers can be excluded on the basis of sequence characteristics of different groups of homologs.Conclusion Our results do not support the view that archaebacteria constitute a monophyletic domain, but instead suggest a close evolutionary linkage between archaebacteria and Gram-positive bacteria. Furthermore, in contrast to the presently accepted view, eukaryotic hsp70s show a close and specific relationship to those from Gram-negative species. To explain the phylogenies based on different gene sequences, a chimeric model for the origin of the eukaryotic cell nucleus involving fusion between an archaebacterium and a Gram-negative eubacterium is proposed. Several predictions from the chimeric model are discussed.  相似文献   

3.
4.
A novel sequence of 2.9 kb in the intergenic region between the mutS and rpoS genes of Escherichia coli O157:H7 and closely related strains replaces a sequence of 6.1 kb in E. coli K-12 strains. At the same locus in Shigella dysenteriae type 1, a sequence identical to that in O157:H7 is bounded by the IS1 insertion sequence element. Extensive polymorphism in the mutS-rpoS chromosomal region is indicative of horizontal transfer events.  相似文献   

5.
Enzymes of the gluconeogenic/glycolytic pathway (the Embden-Meyerhof-Parnas (EMP) pathway), the reductive tricarboxylic acid cycle, the reductive pentose phosphate cycle and the Entner-Doudoroff pathway are widely distributed and are often considered to be central to the origins of metabolism. In particular, several enzymes of the lower portion of the EMP pathway (the so-called trunk pathway), including triosephosphate isomerase (TPI; EC 5.3.1.1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12/13), phosphoglycerate kinase (PGK; EC 2.7.2.3) and enolase (EC 4.2.1.11), are extremely well conserved and universally distributed among the three domains of life. In this paper, the distribution of enzymes of gluconeogenesis/glycolysis in hyperthermophiles--microorganisms that many believe represent the least evolved organisms on the planet--is reviewed. In addition, the phylogenies of the trunk pathway enzymes (TPIs, GAPDHs, PGKs and enolases) are examined. The enzymes catalyzing each of the six-carbon transformations in the upper portion of the EMP pathway, with the possible exception of aldolase, are all derived from multiple gene sequence families. In contrast, single sequence families can account for the archaeal and hyperthermophilic bacterial enzyme activities of the lower portion of the EMP pathway. The universal distribution of the trunk pathway enzymes, in combination with their phylogenies, supports the notion that the EMP pathway evolved in the direction of gluconeogenesis, i.e., from the bottom up.  相似文献   

6.
The endosymbiotic origin of chloroplasts from cyanobacteria has long been suspected and has been confirmed in recent years by many lines of evidence. Debate now is centered on whether plastids are derived from a single endosymbiotic event or from multiple events involving several photosynthetic prokaryotes and/or eukaryotes. Phylogenetic analysis was undertaken using the inferred amino acid sequences from the genes psbA, rbcL, rbcS, tufA and atpB and a published analysis (Douglas and Turner, 1991) of nucleotide sequences of small subunit (SSU) rRNA to examine the relationships among purple bacteria, cyanobacteria and the plastids of non-green algae (including rhodophytes, chromophytes, a cryptophyte and a glaucophyte), green algae, euglenoids and land plants. Relationships within and among groups are generally consistent among all the trees; for example, prochlorophytes cluster with cyanobacteria (and not with green plastids) in each of the trees and rhodophytes are ancestral to or the sister group of the chromophyte algae. One notable exception is that Euglenophytes are associated with the green plastid lineage in psbA, rbcL, rbcS and tufA trees and with the non-green plastid lineage in SSU rRNA trees. Analysis of psbA, tufA, atpB and SSU rRNA sequences suggests that only a single bacterial endosympbiotic event occurred leading to plastids in the various algal and plant lineages. In contrast, analysis of rbcL and rbcS sequences strongly suggests that plastids are polyphyletic in origin, with plastids being derived independently from both purple bacteria and cyanobacteria. A hypothesis consistent with these discordant trees is that a single bacterial endosymbiotic event occurred leading to all plastids, followed by the lateral transfer of the rbcLS operon from a purple bacterium to a rhodophyte.  相似文献   

7.
Expanded genome/proteome databases and effective use of sequence alignment tools make it possible to trace the phylogeny of individual eukaryotic proteins and ultimately to identify the prokaryotes that contributed to the last eukaryotic common ancestor (LECA). I developed an application of reciprocal BLASTp that identifies (1) the prokaryotic lineages that have contributed to the nuclear genome and (2) the specific proteins acquired from prokaryotic ancestors. Eight complete eubacterial proteomes were analyzed: two free-living spirochetes, two clostridia, two actinobacteria, and two proteobacteria (one alpha and one gamma). The data reveal a spirochete genetic contribution to the eukaryotic genome including essential proteins involved in DNA binding and repair, cyclic nucleotide metabolism, acyltransferase, and signal transduction. My results, consistent with the sulfur syntrophy hypothesis that posits LECA evolved from a merger of spirochetes (eubacteria) with sulfidogenic eocytes (archaebacteria), confirm the contribution of mitochondrial genes from alpha-proteobacteria. A contribution from clostridia to eukaryote genomes was also detected whereas none was seen from either actinobacterium or Escherichia coli. The complete spirochete and clostridial genetic contributions to eukaryotes and those of other eu-and archaebacteria can be identified by this method.  相似文献   

8.
The origin of the eukaryotic cell nucleus and the selective forces that drove its evolution remain unknown and are a matter of controversy. Autogenous models state that both the nucleus and endoplasmic reticulum (ER) derived from the invagination of the plasma membrane, but most of them do not advance clear selective forces for this process. Alternative models proposing an endosymbiotic origin of the nucleus fail to provide a pathway fully compatible with our knowledge of cell biology. We propose here an evolutionary scenario that reconciles both an ancestral endosymbiotic origin of the eukaryotic nucleus (endosymbiosis of a methanogenic archaeon within a fermentative myxobacterium) with an autogenous generation of the contemporary nuclear membrane and ER from the bacterial membrane. We specifically state two selective forces that operated sequentially during its evolution: (1) metabolic compartmentation to avoid deleterious co-existence of anabolic (autotrophic synthesis by the methanogen) and catabolic (fermentation by the myxobacterium) pathways in the cell, and (2) avoidance of aberrant protein synthesis due to intron spreading in the ancient archaeal genome following mitochondrial acquisition and loss of methanogenesis.  相似文献   

9.
The origin of microsporidia and the evolutionary relationships among the major lineages of fungi have been examined by molecular phylogeny using alpha-tubulin and beta-tubulin. Chytrids, basidiomycetes, ascomycetes, and microsporidia were all recovered with high support, and the zygomycetes were consistently paraphyletic. The microsporidia were found to branch within zygomycetes, and showed relationships with members of the Entomophthorales and Zoopagales. This provides support for the microsporidia having evolved from within the fungi, however, the tubulin genes are difficult to interpret unambiguously since fungal and microsporidian tubulins are very divergent. Rapid evolutionary rates a characteristic of practically all microsporidian genes studied, so determining their evolutionary history will never be completely free of such difficulties. While the tubulin phylogenies do not provide a decisive conclusion, they do further narrow the probable origin of microsporidia to a zygomycete-like ancestor.  相似文献   

10.
Towards the minimal eukaryotic parasitic genome   总被引:3,自引:0,他引:3  
Microsporidia are well-known to infect immunocompromised patients and are also responsible for clinical syndromes in immunocompetent individuals. In recent years, evidence has been obtained in support of a very close relationship between Microsporidia and Fungi. In some species, the compaction of the genome and genes is remarkable. Thus, a systematic sequencing project has been initiated for the 2.9 Mbp genome of Encephalitozoon cuniculi, which will be useful for future comparative genomic studies.  相似文献   

11.
Madagascar is home to numerous endemic species and lineages, but the processes that have contributed to its endangered diversity are still poorly understood. Evidence is accumulating to demonstrate the importance of Tertiary dispersal across varying distances of oceanic barriers, supplementing vicariance relationships dating back to the Cretaceous, but these hypotheses remain tentative in the absence of well-supported phylogenies. In the Papilio demoleus group of swallowtail butterflies, three of the five recognized species are restricted to Madagascar, whereas the remaining two species range across the Afrotropical zone and southern Asia plus Australia. We reconstructed phylogenetic relationships for all species in the P. demoleus group, as well as 11 outgroup Papilio species, using 60 morphological characters and about 4 kb of nucleotide sequences from two mitochondrial (cytochrome oxidase I and II) and two nuclear (wg and EF-1alpha) genes. Of the three endemic Malagasy species, the two that are formally listed as endangered or at risk represented the most basal divergences in the group, while the more common third endemic was clearly related to African P. demodocus. The fifth species, P. demoleus, showed little differentiation across southern Asia, but showed divergence from its subspecies sthenelus in Australia. Dispersal-vicariance analysis using cladograms derived from morphology and three independent genes indicated a Malagasy diversification of lime swallowtails in the middle Miocene. Thus, diversification processes on the island of Madagascar may have contributed to the origin of common butterflies that now occur throughout much of the Old World tropical and subtemperate regions. An alternative hypothesis, that Madagascar is a refuge for ancient lineages resulting from successive colonizations from Africa, is less parsimonious and does not explain the relatively low continental diversity of the group.  相似文献   

12.
Molecular clocks, molecular phylogenies and the origin of phyla   总被引:3,自引:0,他引:3  
Erwin, Douglas H. 1989 07 15: Molecular clocks, molecular phylogenies and the origin of phyla. Lethaia , Vol. 22, pp. 251–257. Oslo. ISSN 0024–1164.
Protein, RNA and DNA sequences have been widely used to construct phylogenies and to calculate divergence times using a molecular clock. Reliance on molecular information is particularly attractive when fossil evidence is missing or equivocal, as in the Cambrian metazoan radiation. I consider the applicability of molecular clocks and phylogenetic analysis of molecular data to the origin of metazoan phyla, and conclude that molecular information is often ambiguous or misleading. Amino acid sequences are of limited use because the redundancy of the genetic code masks patterns of descent, while in a nucleotide sequence only four potential states exist at each site (the four nucleotide bases). In each case, homoplasy may often go undetected. The application of a molecular clock to resolve the timing of the metazoan radiation is unwarranted, while molecular phylogenetic reconstruction should be approached with care. A potentially more useful technique for phylogenetic reconstruction would be the use of patterns of genome structure and organization as characters. * Molecular clock, phylogenetics, metazoan radiation, origin of phyla .  相似文献   

13.
Evidence for myxobacterial origin of eukaryotic defensins   总被引:1,自引:0,他引:1  
Zhu S 《Immunogenetics》2007,59(12):949-954
Antimicrobial defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) motif are a large family of ancient, evolutionarily related innate immunity effectors of multicellular organisms. Although the widespread distribution in plants, fungi, and invertebrates suggests their uniqueness to Eukarya, it is unknown whether these eukaryotic defensins originated before or posterior to the emergence of eukaryotes. In this study, we provide evidence in support of the existence of defensin-like peptides (DLPs) in myxobacteria based on structural bioinformatics analysis, which recognized two bacterial peptides with a conserved cysteine-stabilized α-helical motif, a nested structural unit of the CSαβ motif. Similarity in sequence and structure to fungal DLPs together with restricted distribution to the myxobacteria as well as central role of the myxobacteria in the origin of eukaryotes suggest that the bacterial DLPs represent the ancestor of the eukaryotic defensins and could mediate immune defense of early eukaryotes after gene transfer to the proto-eukaryotic genome. Our work thus offers a basis for further investigation of prokaryotic origin of eukaryotic immune effector molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage.

Results

Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus.

Conclusion

Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).
  相似文献   

15.
The structure of the unique bacterial tubulin BtubA/B from Prosthecobacter is very similar to eukaryotic αβ-tubulin but, strikingly, BtubA/B fold without eukaryotic chaperones. Our sequence comparisons indicate that BtubA and BtubB do not really correspond to either α- or β-tubulin but have mosaic sequences with intertwining features from both. Their nucleotide-binding loops are more conserved, and their more divergent sequences correspond to discrete surface zones of tubulin involved in microtubule assembly and binding to eukaryotic cytosolic chaperonin, which is absent from the Prosthecobacter dejongeii draft genome. BtubA/B cooperatively assembles over a wider range of conditions than αβ-tubulin, forming pairs of protofilaments that coalesce into bundles instead of microtubules, and it lacks the ability to differentially interact with divalent cations and bind typical tubulin drugs. Assembled BtubA/B contain close to one bound GTP and GDP. Both BtubA and BtubB subunits hydrolyze GTP, leading to disassembly. The mutant BtubA/B-S144G in the tubulin signature motif GGG(T/S)G(S/T)G has strongly inhibited GTPase, but BtubA-T147G/B does not, suggesting that BtubB is a more active GTPase, like β-tubulin. BtubA/B chimera bearing the β-tubulin loops M, H1-S2, and S9-S10 in BtubB fold, assemble, and have reduced GTPase activity. However, introduction of the α-tubulin loop S9-S10 with its unique eight-residue insertion impaired folding. From the sequence analyses, its primitive assembly features, and the properties of the chimeras, we propose that BtubA/B were acquired shortly after duplication of a spontaneously folding α- and β-tubulin ancestor, possibly by horizontal gene transfer from a primitive eukaryotic cell, followed by divergent evolution.  相似文献   

16.
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.  相似文献   

17.
The eukaryotic genome is a mosaic of eubacterial and archaeal genes in addition to those unique to itself. The mosaic may have arisen as the result of two prokaryotes merging their genomes, or from genes acquired from an endosymbiont of eubacterial origin. A third possibility is that the eukaryotic genome arose from successive events of lateral gene transfer over long periods of time. This theory does not exclude the endosymbiont, but questions whether it is necessary to explain the peculiar set of eukaryotic genes. We use phylogenetic studies and reconstructions of ancestral first appearances of genes on the prokaryotic phylogeny to assess evidence for the lateral gene transfer scenario. We find that phylogenies advanced to support fusion can also arise from a succession of lateral gene transfer events. Our reconstructions of ancestral first appearances of genes reveal that the various genes that make up the eukaryotic mosaic arose at different times and in diverse lineages on the prokaryotic tree, and were not available in a single lineage. Successive events of lateral gene transfer can explain the unusual mosaic structure of the eukaryotic genome, with its content linked to the immediate adaptive value of the genes its acquired. Progress in understanding eukaryotes may come from identifying ancestral features such as the eukaryotic splicesome that could explain why this lineage invaded, or created, the eukaryotic niche.  相似文献   

18.
The fossil record and systematics of murid rodents, reservoirs of zoonotic cutaneous leishmaniasis in the Palaearctic, Oriental, African, Nearctic and Neotropical, strongly support a Palaearctic origin of Leishmania. The fossil record and systematics of phlebotomine sand flies reinforce this idea. Interpretations of molecular data that place the origin of Leishmania in the Neotropical are inconsistent with the natural histories of reservoirs and vectors. The evolutionary pattern of New World rats (Sigmodontinae) indicates that they may be the most important reservoirs of zoonotic cutaneous leishmaniasis throughout their range.  相似文献   

19.
20.
Improvement of a gene product by introducing mutations into the gene is usually applied for improving structural genes. In this study the procedure was applied for generation and improvement of a genetic signal to drive gene expression. By adding various concentrations of Mn2+ to the PCR reaction mixture, mutations were introduced into a DNA fragment at various ratios. An appropriate condition was employed to introduce mutations into a DNA fragment with no promoter activity. The mutated fragment was introduced at an upstream site of the lacZ gene in a plasmid vector to see if the fragment carries promoter activity. Lysate of an Escherichia coli transformant with the vector was assayed for beta-galactosidase expression as an indicator of the promoter activity. Mutated DNA fragments were generated by error prone PCR with a condition which leads to introduction of 1.5% of mutation into a DNA fragment during the process. The strongest promoter was chosen by beta-galactosidase assay after error prone PCR and subjected to another step of the PCR. These processes were repeated four times to improve its activity to 1.94-fold to that by the tac promoter. When the luciferase gene was expressed by the strongest promoters, a similar expression level was noted. These results indicate that by randomly introducing mutations into a DNA fragment, it is relatively easy to generate and improve a prokaryotic promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号