首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific antisera to purified DNA polymerase alpha from embryos of Drosophila melanogaster and to two of the four constituent subunits (alpha, beta, gamma, and delta) were prepared. These antibodies have revealed the following features of the enzyme. (i) The Mr = 148,000 alpha subunit is very likely derived by in vitro proteolysis from polypeptides with molecular weights of 185,000 and 166,000 that are present in vivo. (ii) The Mr = 60,000 beta subunit occurs in rapidly replicating embryos as both an 85,000- and a 60,000-dalton form, but predominantly as a 60,000-dalton form in more slowly replicating cultured cells. (iii) There is no detectable immunologic cross-reactivity between the four subunits. (iv) There is an abundance of antigenic material in embryos that co-migrates with the delta subunit of the purified enzyme during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

2.
We induced goat antibodies to Drosophila RNA polymerase II and rabbit antibodies to the isolated 215,000-dalton and 140,000-dalton polymerase II subunits (P215 and P140, respectively). Similarly, we induced rabbit antibodies to wheat germ RNA polymerase II and to the 220,000-dalton subunit and 140,000-dalton subunit (P220 and P140, respectively). Anti-polymerase antibodies precipitated the homologous native enzyme and inhibited its activity in vitro, while several of the anti-subunit sera did neither. The anti-Drosophila P215 serum specifically labeled RNA polymerase II fixed in situ on polytene chromosomes. We reacted the antibodies with polymerase subunits separated by sodium dodecyl sulfate gel electrophoresis and electrophoretically transferred to nitrocellulose ("protein blotting"). Each antibody to whole polymerase reacted with multiple subunits, while the anti-subunit sera each reacted specifically with the subunit employed as immunogen. The anti-subunit sera also cross-reacted with the analogous subunit from several heterologous polymerases II (from yeast, wheat germ, Drosophila, and calf thymus), demonstrating shared subunit-specific determinants in polymerase II from widely divergent organisms. The anti-polymerase sera also showed cross-reactivity with subunits of heterologous enzymes, but only in one case did the cross-reactivity involve subunits other than the two largest ones. Specifically, the goat anti-Drosophila polymerase serum displayed easily detectable cross-reactivity with four low molecular weight subunits of calf thymus polymerase II, providing a unique demonstration of antigenic relatedness of small RNA polymerase II subunits from different higher eukaryotes.  相似文献   

3.
S Nilekani  C SivaRaman 《Biochemistry》1983,22(20):4657-4663
Citrate lyase (EC 4.1.3.6) has been purified from Escherichia coli and the homogeneity of the preparation established from the three-component subunits obtained on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of 120 mumol min-1 mg-1 and requires optimally 10 mM Mg2+ and a pH of 8.0 for the cleavage reaction. The native enzyme is polydispersed in the ultracentrifuge and in polyacrylamide gel electrophoresis. The enzyme complex is composed of three different polypeptide chains of 85 000, 54 000, 32 000 daltons. An estimate of subunit stoichiometry indicates that 1 mol of the largest polypeptide chain is associated with 6 mol each of the smaller ones. The polypeptide subunits have been isolated in pure state and their biological functions characterize. The 54 000-dalton subunit functions as the acyltransferase alpha subunit catalyzing the formation of citryl coenzyme A from citrate in the presence of acetyl coenzyme A and ethylenediaminetetraacetic acid. The 32 000-dalton subunit functions as the acyllyase beta subunit catalyzing the cleavage of (3S)-citryl coenzyme A to oxal-acetate and acetyl coenzyme A. The 85 000-dalton subunit, which carries exclusively the prosthetic group components, functions as the acyl-carrier protein gamma subunit in the cleavage of citrate in the presence of mg2+ and the alpha and beta subunits. The presence of a large ACP subunit and the unusual stoichiometry of the different subunits distinguish the complex from other citrate lyases. A ligase which acetylates the deacetyl[citrate lyase] in the presence of acetate and ATP has ben shown to be present in the organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Proteins stained with Coomassie brilliant blue on polyacrylamide gels were digested with lysylendopeptidase in the presence of sodium dodecyl sulfate. Peptide production was similar to that under ordinary conditions of digestion. Peptides were recovered easily and efficiently from the gel pieces and separated by HPLC. The present method for preparation of peptides from proteins separated by sodium dodecyl sulfate gel electrophoresis is quite simple and can be used for sequence analysis of proteins in general at the subnanomolar level.  相似文献   

5.
Freshly purified preparations of anthranilate synthetase complex from Neurospora crassa appeared to be homogeneous on polyacrylamide disc gels and were composed of two distinct subunits, 94,000 and 70,000 daltons, respectively, as determined by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Carboxymethylation of the complex or treatment with guanidine hydrochloride and urea before sodium dodecyl sulfate treatment did not alter the subunit pattern. When the purified complex was iodinated with 125I- or methylated with [14C]dimethylsulfate, no labeled components other than the two subunits stained with Coomassie blue were detected after electrophoresis in the presence of sodium dodecyl sulfate. Although some purified preparations were stable, most were unstable upon storage. Analysis of the unstable preparations on nondenaturing and sodium dodecyl sulfate polyacrylamide disc gels revealed that the complex in these preparations was progressively fragmented to smaller components and subunits upon repeated freeze-thaw treatment or prolonged incubation at or above 4 degrees. Distinct fragments were generated ranging in size down to 25,000 daltons, and some fragments retained some of the activities associated with the anthranilate synthetase complex. On the basis of these and earlier studies, we conclude that anthranilate synthetase from Neurospora crassa is composed of two distinct subunits in an alpha2beta2 structure; one subunit is a trifunctional peptide which contains the catalytic sites for the phosphoribosylanthranilate isomerase and indoleglycerol phosphate synthetase reactions, and associates with the second subunit to form glutamine-dependent anthranilate synthetase. The smaller subunits and components previously reported for this complex are apparently due to protease activity present in purified preparations.  相似文献   

6.
N M Nathanson  Z W Hall 《Biochemistry》1979,18(15):3392-3401
We have purified the junctional acetylcholine receptor from normal rat skeletal muscle and compared its structure with that of the extrajunctional receptor from denervated muscle. The two receptors from leg muscle were distinguished by isoelectric focusing and by reaction with sera from patients with myasthenia gravis. The junctional form of the acetylcholine receptor was purified from normal leg muscle by affinity chromatography on concanavalin A/Sepharose and cobrotoxin/Sepharose followed by sucrose gradient centrifugation. Analysis of radioiodinated receptor by polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated that the subunit structure of the junctional receptor was similar to that previously determined for the extra-junctional form (Froehner, S. C., et al. (1977) J. Biol. Chem. 252, 8589-8596), with major polypeptides, whose apparent molecular weights in 9% polyacrylamide gels were 45 000 and 51 000. In addition, several minor polypeptides were found. When the two receptors were labeled with different isotopes of iodine and run together on a sodium dodecyl sulfate gel, the subunits of one receptor could not be resolved from those of the other. As seen earlier with the extrajunctional form, the affinity alkylating reagent [3H]MBTA labeled the 45 000- and 49 000-dalton polypeptides of the junctional receptor. Peptide mapping showed that the two MBTA binding subunits are structurally related, although they are unrelated to the other polypeptides, and that the 45 000- and 51 000-dalton polypeptides of the junctional receptor were indistinguishable from those of the extrajunctional receptor. In addition, peptide mapping of the four subunits of acetylcholine receptor isolated from Torpedo californica electric organ showed that these four polypeptides appear to be structurally unrelated.  相似文献   

7.
The ribosomal proteins from 40 S and 60 S subunits of rabbit reticulocytes were separated by two-dimensional polyacrylamide gel electrophoresis. The protein spots stained with Coomassie brilliant blue were cut out and the proteins were extracted. The material extracted from each spot was mixed with proteins of known molecular weight and then analyzed by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. Both the total number and the molecular weights of each of the proteins were determined by these procedures. Thirty-two proteins were identified in the 40 S subunits; their molecular weights ranged from 8000 to 39,000 (average mol. wt = 25,000). Thirty-nine proteins were identified in the 60 S subunit; their molecular weights ranged from 9000 to 58,000 (average mol. wt = 31,000). The sum of the molecular weights of the individual proteins from each subunit is in agreement with previous estimations, derived from physico-chemical measurements of the total protein in mammalian ribosomal subunits. The molecular weight distribution obtained for the isolated proteins was nearly identical to that derived from spectrophotometric analysis of polyacrylamide-sodium dodecyl sulfate gels of the total protein mixtures from each subunit stained with Coomassie brilliant blue. The results are consistent with the hypothesis that reticulocyte ribosomes contain one copy of most of their protein constituents.  相似文献   

8.
Extracellular glucoamylase produced by a starch-fermenting yeast, Saccharomyces diastaticus 5106-9A, was purified. The enzyme was found to be heterogeneous in molecular weight, ranging from approximately 80K to 66K as estimated by gel filtration, and consisted of two subunits, H and Y. The molecular weight of subunit H was heterogeneous and was determined to be approximately 68K, 59K, and 53K by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weight of subunit Y was 14K, estimated by the same gel. the molecular weight of the deglycosylated form of subunit H was 41K, suggesting that the heterogeneity of the enzyme was due to glycosyl moieties of subunit H. Subunits H and Y were separated by gel filtration in the presence of sodium dodecyl sulfate. Subunit Y seemed to be hydrophobic, since it was insoluble in an aqueous buffer without detergent.  相似文献   

9.
Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.  相似文献   

10.
Basic proteins of 60S- and 40S-subunits of pea seed ribosomes were studied by two-dimensional electrophoresis in polyacrylamide gel (PAAG) with subsequent electrophoresis of separated proteins in the gels containing sodium dodecyl sulfate. The proteins under study were found to be electrophoretically heterogenous and showed considerable variations in the staining by amido black and a specific distribution between the two subunits. 47 protein components were detected in the protein preparations of the 60S subunit: 18--as intensively stained, 12--as moderately stained and 17--as weakly stained spots. Presumably, the 60S subunit does not contain proteins whose molecular weights are over 60.000 or below 14.000. Two proteins have mol. weight over 50.000; other proteins have mol. weights varying between 15.000 and 30.000. 32 proteins components were revealed in the protein preparations of the 40S subunit: 15--as intensively coloured, 8--as moderately coloured and 9--as weakly coloured spots. The 40S subunit does not contain proteins whose molecular weights are over 33.000 and below 10.000. Three proteins have mol. weights over 30.000, the other proteins have mol. weights within the interval of 15.000--30.000. The amount of basic proteins in the 80S plant ribosomes is, in all probability, higher as compared to that in animal ribosomes, and this is due to the 60S subunit.  相似文献   

11.
The his4 region of yeast encodes the information for the third (phosphoribosyl-AMP cyclohydrolase), second (phosphoribosyl-ATP pyrophosphohydrolase), and tenth (histidinol dehydrogenase) steps in the histidine biosynthetic pathway. These three activities co-purify with a single protein which has a subunit molecular weight of 95,000 (95,000 protein), as determined by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Extracts of yeast strains which carry nonsense or deletion mutations in various portions of the his4 region, purified in parallel by affinity chromatography on AMP-agarose columns, were examined on sodium dodecyl sulfate-polyacrylamide gel electrophoresis slabs. All such mutant extracts examined were found to lack the 95,000 protein found in a strain carrying a wild type his4 allele. The presence of a protease inhibitor, phenylmethylsulfonyl fluoride, during the purification of the trifunctional enzyme prevented the degradation of the 95,000 protein to polypeptides of lower molecular weight. Monospecific antibody prepared against the 95,000 protein removed all three of the activities specified by his4 from solution; active 95,000 protein was recovered in the resuspended immunoprecipitates. All this evidence shows that the product of the his4 region is a trifunctional, 95,000-dalton protein. Preliminary evidence from two-dimensional gel electrophoresis, NH2-terminal analysis, and gel filtration column chromatography indicates that the native trifunctional enzyme is a dimer of identical 95,000-dalton subunits.  相似文献   

12.
Globular proteins, casein, and membrane proteins which were reacted with sodium dodecyl sulfate were studied by acid urea gel electrophoresis. The sodium dodecyl sulfate bound tightly to the proteins, producing a more acidic charge which prevented migration into the gel. When cetyltrimethylammonium bromide was added to the sodium dodecyl sulfate-protein complexes, the sodium dodecyl sulfate apparently reacted with cetyltrimethylammonium bromide and dissociated so that the proteins migrated in acid gel in a normal manner as compared to the proteins without any added detergent. The sodium dodecyl sulfate-cetyltrimethylammonium bromide complex could be removed from the proteins by centrifugation. Thus, cetyltrimethylammonium bromide used in conjunction with acid gel electrophoresis allows direct comparison by charge of proteins fractionated in the presence of sodium dodecyl sulfate with the starting mixture of proteins not exposed to detergent. The reaction of cetyltrimethylammonium bromide with sodium dodecyl sulfate in acidic urea also provides a simple convenient method of removal of sodium dodecyl sulfate from proteins.  相似文献   

13.
Threonyl-transfer ribonucleic acid synthetase (ThrRS) has been purified from a strain of Escherichia coli that shows a ninefold overproduction of this enzyme. Determination of the molecular weight of the purified, native enzyme by gel chromatography and by polyacrylamide gel electrophoresis at different gel concentrations yielded apparent molecular weight values of 150,000 and 161,000, respectively. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate yields a single protein band of 76,000-dalton size. From these results an alpha(2) subunit structure can be inferred. A mutant with a structurally altered ThrRS, which had been obtained by selection for resistance against the antibiotic borrelidin, was used to map the position of the ThrRS structural gene (thrS) by P1 transductions. It was found that thrS is located in the immediate neighborhood of pheS and pheT, which are the structural genes for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid (tRNA) synthetase, the gene order being aroD-pheT-pheS-thrS. A lambda phage that was previously shown to specifically transduce pheS, pheT, and also the structural gene for the translation initiation factor IF3 can complement the defect of the altered ThrRS of the borrelidin-resistant strain. This phage also stimulates the synthesis of the 76,000, molecular-weight polypeptide of ThrRS in ultraviolet light-irradiated. E. coli cells. These results indicate that the genes for ThrRS, alpha and beta subunits of phenylalanyl-tRNA synthetase, and initiation factor IF3 are immediately adjacent on the E. coli chromosome.  相似文献   

14.
The erythrocruorin of the freshwater leech Dina dubia possessed an S20,w of 61 S and exhibited a slightly sigmoid oxygenation curve with n congruent to 1.6 and P50 = 2.4 mm at pH 7.4. A minimum mol. wt of 23 000 +/- 2100 per heme group was determined from the iron and heme contents, 0.22 +/- 0.02 and 2.92 +/- 0.35 weight %. The subunit composition of this erythrocruorin was investigated using polyacrylamide gel electrophoresis and gel filtration in sodium dodecyl sulfate at neutral pH and gel filtration at pH 9. Sodium dodecyl sulfate electrophoresis of Dina erythrocruorin revealed the presence of five subunits (1-5) with mol. wts of about 13 000, 21 000, 23 000, 25 000 and 31 000, respectively. When the erythrocruorin was reduced with mercaptoethanol prior to dodecyl sulfate electrophoresis, three subunits (I-III) were observed, two possessing molecular weights in the range 12 000-14 000 (I and II) and one possessing a molecular weight of about 28 000. One of the subunits I, II, was provided by the dissociation of the 31 000 subunit. Subunit III (28 000) consisted of subunits 2, 3, and 4. It is likely that not all of the polypeptide chains constituting Dina erythrocruorin are associated each with a heme group.  相似文献   

15.
A high molecular weight phosphoprotein phosphatase was purified approximately 11,000-fold from the glycogen-protein complex of rabbit skeletal muscle. Polyacrylamide gel electrophoresis of the preparation in the absence of sodium dodecyl sulfate showed a major protein band which contained the activity of the enzyme. Gel electrophoresis in the presence of sodium dodecyl sulfate also showed a major protein band migrating at 38,000 daltons. The sedimentation coefficient, Stokes radius, and frictional ratio of the enzyme were determined to be 4.4 S, 4.4 nm, and 1.53, respectively. Based on these values the molecular weight of the enzyme was calculated to be 83,000. The high molecular weight phosphatase was dissociated upon chromatography on a reactive red-120 agarose column. The sedimentation coefficient, Stokes radius, and frictional ratio of the dissociated enzyme (termed monomer) were determined to be 4.1 S, 2.4 nm, and 1.05, respectively. The molecular weight of the monomer enzyme was determined to be 38,000 by polyacrylamide gel electrophoresis. Incubation of the high molecular weight phosphatase with a cleavable cross-linking reagent, 3,3'-dithiobis(sulfosuccinimidyl propionate), showed the formation of a cross-linked complex. The molecular weight of the cross-linked complex was determined to be 85,000 and a second dimension gel electrophoresis of the cleaved cross-linked complex showed that the latter contained only 38,000-dalton bands. Limited trypsinization of the enzyme released a approximately 4,000-dalton peptide from the monomers and dissociated the high molecular weight phosphatase into 34,000-dalton monomers. It is proposed that the catalytic activity of the native glycogen-bound phosphatase resides in a dimer of 38,000-dalton subunits.  相似文献   

16.
Purified lipid-depleted cytochrome oxidase, at purity of 12--14 nmol heme a per mg protein, has been shown to contain seven non-identical subunits in the ratio of unity. Their molucular weights on polyacrylamide gel are, in thousands, 40, 21, 14.8, 13.5, 11.6, 9.5, and 7.6 from gel electrophoresis after dissociation in sodium dodecyl sulfate and beta-mercaptoethanol. The molar ratio is determined by the amino acid composition of each subunit obtained from direct hydrolysis of the stained polyacrylamide gel slices. The amino acid composition of the isolated subunits I and II determined by regular hydrolysis method is found practically the same as that from direct hydrolysis of gel slices. The heme-associated polypeptides are identified with subunits of molecular weights of 40.10(3) and 11.6.10(3). One of the two coppers associated with the polypeptide of molecular weight of 21 000. The second copper may be associated with heme in the subunit of 40.10(3). Evidence of the existence of interpolypeptide disulfide linkages is presented.  相似文献   

17.
Phaseolin, the major seed storage protein of Phaseolus vulgaris from forty-four wild and cultivated accessions, was studied using sodium dodecyl sulphate-capillary gel electrophoresis (SDS-CGE). In total, eleven phaseolin profiles, revealing polypeptide subunit variation in the range from 45.6 kDa to 54.4 kDa, were recorded. The number of polypeptide subunits recorded in particular profiles varied from 3 to 6; in total, eight phaseolin subunits were distinguished in the examined material. Ferguson plot analysis was used to correct non-ideal behaviour of phaseolin polypeptide subunits in capillary gel electrophoresis in the presence of SDS. The obtained results are compared to electrophoretic data received by slab polyacrylamide gel electrophoresis. The SDS-CGE method appears to provide a powerful tool for disclosure of phaseolin subunit variability.  相似文献   

18.
Poly(A)-rich RNA was isolated from developing soybean seeds (Glycine max (L.) Merr.) and fractionated on linear log sucrose gradients. Two major fractions sedimenting at 18 S and 20 S were separated and then purified by further sucrose gradient fractionation. Both fractions were active as messengers when added to a rabbit reticulocyte lysate protein synthesis system. The 18 S fraction caused proteins migrating primarily to the 60,000-dalton region of a sodium dodecyl sulfate gel to be produced, while translation of the 20 S fraction preferentially directed the synthesis of polypeptides similar in size to the alpha and alpha' subunits of beta-conglycinin. Evidence that many of the 60,000-dalton polypeptides were related to glycinin and the high molecular weight 20 S translation products were related to beta-conglycinin was obtained by immunoprecipitation using monospecific antibodies against glycinin and beta-conglycinin, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the immunoprecipitated products revealed that the glycinin precursor region contained at least three different size components and that the family of glycinin precursors had larger apparent molecular weight (58,000-63,000) than the disulfide-linked complexes between acidic and basic glycinin subunits (57,000). Unlike the disulfide-linked glycinin complexes which were cleaved by disulfide reduction, glycinin precursors were insensitive to reducing agents. The alpha and alpha' subunits synthesized in vitro also had slightly larger apparent molecular weights than purified alpha and alpha' standards.  相似文献   

19.
The dicyclohexylcarbodiimide-sensitive ATPase from spinach chloroplast has been isolated. On sodium dodecyl sulfate gels, seven different polypeptides were seen. Five of these polypeptides coincided with the CF1 subunits, a 7,500-dalton peptide was identified as the proteolipid which interacts with [14C]dicyclohexylcarbodiimide, and there was a 15,500-dalton hydrophobic polypeptide with unknown function. In two-dimentional gels, two additional peptides were resolved, one 17,500 daltons (co-migrating in sodium dodecyl sulfate gels with subunit delta) and one 13,500 daltons (co-migrating with subunit epsilon). Reconstitution was obtained by freezing and thawing the complex with a crude mixture of phospholipids. After reconstitution the complex catalyzed 32P1-ATP exchange (rates of 200 to 400 nmoles x mg-1 x min-1) and ATP formation during acid-to-base transition. These reactions were inhibited by dicyclohexylcarbodiimide and uncouplers. Uncouplers at low concentrations stimulated and at high concentrations inhibited the Mg2+-ATPase activity. ATP hydrolysis and 32P1-ATP exchange were catalyzed by the complex in the presence of either Mg2+ or Mn2+ but not with Ca2+ or Co2+. ATP and GTP were substrates for the exchange reaction but not ADP or CTP.  相似文献   

20.
Brauer D  Teel MR 《Plant physiology》1981,68(6):1406-1408
Trans-aconitate synthesis via citrate dehydrase was determined in crude extracts of maize (Zea mays L.) coleoptiles. Two molecular forms of this enzyme were purified by substrate-specific elution from DEAE-cellulose, ammonium sulfate precipitation, and gel filtration. Each molecular form migrates as a single band in isoelectric focusing. Gel filtration and sodium dodecyl sulfate electrophoresis provided evidence that one enzyme form is composed of four 80,000-dalton subunits while the other is composed of two 60,000-dalton subunits. There was no evidence of proteolytic conversion of the large to the small molecular weight form when the former was incubated with either the 15,000g supernatant or with proteases. The data indicate that the two molecular forms of citrate dehydrase are isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号