首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluo-3, one member of a family of new fluorescent Ca2+ indicators excitable at wavelengths in the visible (Minta, A., Kao, J. P. Y., and Tsien, R. Y. (1989) J. Biol. Chem. 264, 8171-8178), has been tested in living cells. We demonstrate that fluo-3 can be loaded into fibroblasts and lymphocytes by incubation with the pentaacetoxymethyl ester of the dye and that the ester is hydrolyzed intracellularly to yield genuine fluo-3 capable of indicating changes in [Ca2+]i induced by agonist stimulation. Fluo-3 can also be microinjected into fibroblasts along with photolabile compounds such as nitr-5 and caged inositol trisphosphate for photorelease experiments. Fluo-3 permits continuous monitoring of [Ca2+]i without interference with use of UV-sensitive caged compounds. A procedure for combined use of ionophore and heavy metal ions in end-of-experiment calibration of fluo-3 intensities to give [Ca2+]i is also described.  相似文献   

2.
The induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells requires a rise in postsynaptic intracellular Ca2+ concentration ([Ca2+]i). To determine the time for which Ca2+ must remain elevated to induce LTP, the photolabile Ca2+ buffer diazo-4 was used to limit the duration of the rise in postsynaptic [Ca2+]i following a tetanus. The affinity of diazo-4 for Ca2+ increases approximately 1600-fold upon flash photolysis, permitting almost instantaneous buffering of [Ca2+]i without disturbing resting [Ca2+]i prior to the flash. Photolysis of diazo-4 1 s following the start of the tetanus blocked LTP, while delaying photolysis for more than 2 s had no discernible effect on LTP. Photolyzing diazo-4 at intermediate delays (1.5-2 s) or reducing photolysis of diazo-4 often resulted in short-term potentiation (STP). These results indicate that a tetanus-induced rise in postsynaptic [Ca2+]i lasting at most 2-2.5 s is sufficient to generate LTP. Smaller increases or shorter duration rises in [Ca2+]i may result in STP.  相似文献   

3.
We used perforated patch, whole-cell current recordings and video-based fluorescence ratio imaging to monitor the relation of plasma membrane ionic conductances to intracellular free Ca2+ within individual colonic epithelial cells (HT-29). The Ca2(+)-mediated agonist, neurotensin, activated K+ and Cl- conductances that showed different sensitivities to [Ca2+]i. The Cl- conductance was sensitive to increases or decreases in [Ca2+]i around the resting value of 76 +/- 32 (mean +/- SD) nM (n = 46), whereas activation of the K+ conductance required at least a 10-fold rise in [Ca2+]i. Neurotensin increased [Ca2+]i by stimulating a transient intracellular Ca2+ release, which was followed by a sustained rise in [Ca2+]i due to Ca2+ influx from the bath. The onset of the initial [Ca2+]i transient, monitored at a measurement window over the cell interior, lagged behind the rise in Cl- current during agonist stimulation. This lag was not present when the [Ca2+]i rise was due to Ca2+ entry from the bath, induced either by the agonist or by the Ca2+ ionophore ionomycin. The temporal differences in [Ca2+]i and Cl- current during the agonist-induced [Ca2+]i transient can be explained by a localized Ca2+ release from intracellular stores in the vicinity of the plasma membrane Cl- channel. Chloride currents recover toward basal values more rapidly than [Ca2+]i after the agonist-induced [Ca2+]i transient, and, during a sustained neurotensin-induced [Ca2+]i rise, Cl- currents inactivate. These findings suggest that an inhibitory pathway limits the increase in Cl- conductance that can be evoked by agonist. Because this Cl- current inhibition is not observed during a sustained [Ca2+]i rise induced by ionomycin, the inhibitory pathway may be mediated by another agonist-induced messenger, such as diacylglycerol.  相似文献   

4.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

5.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

6.
H Nishio  Y Ikegami  T Segawa 《Cell calcium》1991,12(2-3):177-184
The intracellular concentration of Ca2+ [( Ca2+]i) was monitored continuously in single rabbit blood platelets by digital imaging microscopy in conjunction with Fura-2, a specific Ca(2+)-indicator dye. Ionomycin as well as aluminium fluoride caused sustained increase in [Ca2+]i in the platelet, but oscillations of [Ca2+]i were not observed. Serotonin (5-HT) induced oscillatory increases in [Ca2+]i in the presence of 1 mM CaCl2; these had not been detectable in cell populations because the oscillations were not in synchrony. This effect of 5-HT was diminished when CaCl2 was omitted from the medium, and was antagonized by 1 microM ketanserin, a specific 5-HT2 receptor antagonist. Furthermore, DOI, a specific 5-HT2 agonist, had the same effect as 5-HT at lower concentration. A specific effector mechanism, not fully understood at present, therefore appears to mediate 5-HT2 receptors thereby allowing rabbit platelets to generate [Ca2+]i oscillations. It is suggested that protein kinase C in platelets might play a key role in the regulation of [Ca2+]i, and possibly in [Ca2+]i oscillations.  相似文献   

7.
Effects of the alpha 2-adrenergic agonist clonidine on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration ([Ca2+]i) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Addition of 2 microM clonidine promptly inhibited glucose-stimulated insulin release, an effect accompanied by a lowering in both membrane potential and [Ca2+]i. Within minutes, the effect on Ca2+ was partly reversed, [Ca2+]i attaining a new level, although still significantly lower than in the absence of agonist. This late increase in [Ca2+]i was inhibited by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. The inhibitory effects of clonidine on membrane potential, [Ca2+]i, and insulin release were abolished by 5 microM of the alpha 2-adrenergic antagonist yohimbine. Depolarization with high K+ increased [Ca2+]i also in the presence of clonidine, conditions accompanied by only a minute release of insulin. Secretion was, however, partly restored by subsequent addition of 20 mM glucose. Addition of 5 mM Ca2+ transiently reversed the effects of clonidine on both membrane potential and [Ca2+]i. Although the clonidine-induced repolarization should be enough for closing the voltage-activated Ca2+ channels with a resulting decrease in [Ca2+]i, a direct interaction of the agonist with these channels cannot be excluded. The fact that it was possible to increase [Ca2+]i with only a minor effect on insulin release suggests that the inhibitory effect of clonidine not only is due to a reduction in [Ca2+]i, but also involves interference with some more distal step in the insulin secretory machinery.  相似文献   

8.
Chou KJ  Tseng LL  Cheng JS  Wang JL  Fang HC  Lee KC  Su W  Law YP  Jan CR 《Life sciences》2001,69(13):1541-1548
The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors.  相似文献   

9.
《The Journal of cell biology》1990,111(6):2543-2552
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose- dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.  相似文献   

10.
Receptor-stimulated phosphoinositide turnover leads to activation of Na+/H+ exchange and subsequent intracellular alkalinization. To probe the effect of increased intracellular pH (pHi) on Ca2+ homeostasis in cultured bovine aortic endothelial cells (BAEC), we studied the effect of weak bases, ammonium chloride (NH4Cl) and methylamine (agents which increase pHi by direct passive diffusion), on resting and ATP (purinergic receptor agonist)-induced Ca2+ fluxes. Changes in cytosolic free Ca2+ ([Ca2+]i) or pHi were monitored in BAEC monolayers using the fluorescent dyes, fura-2 or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively. NH4Cl-induced, dose-dependent (5-20 mM) increases in [Ca2+]i (maximum change = 195 +/- 26 nM) which were temporally similar to the NH4Cl-induced pHi increases. Methylamine (20 mM) induced a more sustained pHi increase and also stimulated a prolonged [Ca2+]i increase. When BAEC were bathed in HCO3- buffer, removal of extracellular CO2/bicarbonate caused pHi to increase and also induced [Ca2+]i to increase transiently. Extracellular Ca2+ removal did not abolish the rapid NH4Cl-induced rise in [Ca2+]i, although the response was blunted and more transient. NH4Cl addition to BAEC cultures resulted in an increase in 45Ca efflux and decrease in total cell 45Ca content. BAEC treatment with ATP (100 microM) to deplete inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools completely blocked the NH4Cl (20 mM)-induced rise in [Ca2+]i. Likewise, prior NH4Cl addition partially inhibited ATP-induced increases in [Ca2+]i, as well as slowed the frequency of repetitive [Ca2+]i spikes in single endothelial cells due to agonist. NH4Cl augmented the rate of [Ca2+]i increase that occurs in response to the depletion of agonist-sensitive intracellular Ca2+ pools. However, the internal Ca2+ store remained depleted during the continued presence of NH4Cl, as indicated by a decreased [Ca2+]i response to ATP in Ca2(+)-free medium. Finally, NH4Cl exerted these actions without affecting basal or ATP-stimulated IP3 formation. These observations provide direct evidence that increased pHi leads to Ca2+ mobilization from an agonist-sensitive pool and impairs Ca2+ pool(s) refilling mechanisms without altering cellular IP3 levels.  相似文献   

11.
We report here that exposing cultured chromaffin cells to a low ionic strength medium (with sucrose in place of NaCl to maintain osmolarity) can induce a marked elevation in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine (CA) release. To determine the underlying mechanism, we first studied the effects of low [Na+]o on single cell [Ca2+]i (using fluo-3 as Ca2+ indicator) and CA release from many cells. In a Mg2+ and Ca2+-deficient medium, lowering the external concentration of Na2+ ([Na+]o) evoked CA secretion preceded by a transitory [Ca2+]i rise, the amplitude of which was inversely related to [Na+]o. By contrast, in the presence of either [Ca2+]o (2 mM) and [Mg2+]o (1.4 mM) or [Mg2+]o alone (3.4 mM), lowering the ionic strength was without effect. Furthermore, in a physiologic [Na+]o, [Ca2+]o and [Mg2+]o medium, two or three consecutive applications of the cholinergic agonist oxotremorine-M (oxo-M) consistently evoked a substantial [Ca2+]i rise. By contrast, consecutive applications of oxo-M in a Ca2+-deficient medium failed to evoke a rise in [Ca2+]i after the first exposure to the agonist. To clarify the underlying mechanism, we measured and compared the effects of low [Na+]o and the cholinergic agonists nicotine and oxo-M on changes in [Ca2+]i; we studied the effects of these agonists on both membrane potential, Vm (under current clamp conditions), and [Ca2+]i by single cell microfluorimetry (indo-1 as Ca2+ indicator). We observed that, in the presence of [Ca2+]o and [Mg2+]o, lowering [Na+]o had no effect on Vm. In a Ca2+-deficient medium, lowering [Na+]o depolarized the membrane from ca. –60 to –10 mV. As expected, we found that nicotine (10 M) depolarized the membrane (from ca. –60 to –20 mV) and simultaneously evoked a substantial [Ca2+]i rise that was [Ca2+]o-dependent. However, contrary to our expectations, we found that the muscarinic agonist oxo-M (50 M) also depolarized the membrane and induced an elevation in [Ca2+]i. Furthermore, both signals were blocked by D-tubocurarine, insinuating the nicotinic character of oxo-M in adrenal chromaffin cells from bovine. These results suggest that both nicotine and oxo-M stimulate Ca2+ entry, probably through voltage-gated Ca2+-channels. We also show here that oxo-M (and not low [Na+]o) stimulates phosphoinositide turnover.  相似文献   

12.
We determined the cellular free calcium concentration [Ca2+]i in response to arginine vasopressin (AVP) using single cells of cultured rat renal papillary collecting tubule cells. AVP at a concentration of 1 x 10(-10) M or higher significantly increased [Ca2+]i in a dose-dependent manner. The prompt increase in [Ca2+]i induced by AVP was completely blocked by the V1V2 antagonist, but not by the V1 antagonist. Also, an antidiuretic agonist of 1-deamino-8-D-arginine vasopressin (dDAVP) increased [Ca2+]i, which was blocked by the pretreatment with the V1 V2 antagonist. An AVP-induced increase in [Ca2+]i was still demonstrable in cells pretreated with Ca2(+)-free medium containing 1 x 10(-3) M EGTA, or a blocker of cellular Ca2+ uptake, 5 x 10(-5) M verapamil. These results indicate that AVP increases [Ca2+]i through the V2 receptor in renal papillary collecting tubule cells where cAMP is a well-known second messenger for AVP, and that cellular free Ca2+ mobilization depends on both the intracellular and extracellular Ca2+.  相似文献   

13.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

14.
The role of internal stores and plasma membrane Ca2+ pumps in controlling [Ca2+]i during agonist stimulation and their regulation by agonists are not well understood. We report here measurements of intracellular ([Ca2+]i) and extracellular ([Ca2+]o) Ca2+ concentrations in agonist-stimulated pancreatic acini in an effort to directly address these questions. Stimulation of acini suspended in Ca(2+)-free or Ca(2+)-containing medium with Ca2+ mobilizing agonists resulted in a typical transient increase in [Ca2+]i. Thapsigargin, a specific inhibitor of internal Ca2+ pumps, inhibited the rate of [Ca2+]i reduction after agonist stimulation by approximately 40%. Under the same conditions, thapsigargin had no effect on the rate of the unidirectional Ca2+ efflux across the plasma membrane as revealed by measurements of [Ca2+]o. These findings suggest that internal Ca2+ pumps actively remove Ca2+ from the cytosol during continued agonist stimulation. The correlation between the reduction in [Ca2+]i and the increase in [Ca2+]o showed that Ca2+ efflux from cells stimulated with agonist and thapsigargin represent Ca2+ efflux across the plasma membrane. Inhibition of cells exposed to agonist and thapsigargin with a specific antagonist sharply reduced the rates of the [Ca2+]i decrease and the accompanied [Ca2+]o increase. Hence, at comparable [Ca2+]i, Ca2+ efflux from stimulated cells was about 3-fold faster than that from resting cells, indicating that agonists directly activate the plasma membrane Ca2+ pump. To study the role of [Ca2+]i increase in plasma membrane Ca2+ pump activation the acini were loaded with 1,2-bis-(2-aminophenoxyethane-N,N,N',N')-tetraacetic acid (BAPTA), and [Ca2+]o was measured during agonist stimulation. Surprisingly, although BAPTA completely prevented the increase in [Ca2+]i, Ca2+ efflux rate was reduced by only 34%. These findings provide the first evidence for Ca(2+)-independent activation of the plasma membrane Ca2+ pump by Ca2+ mobilizing agonists.  相似文献   

15.
The role of a Ca(2+)-induced Ca2+ release (CICR) mechanism in the generation of agonist-induced increases of intracellular free Ca2+ concentration ([Ca2+]i) was studied in bovine adrenal chromaffin cells. In single cells, repetitive stimulations with caffeine at 200-s intervals evoked reproducible spikes of [Ca2+]i. Ryanodine, an agent that interacts with the CICR channel of muscle, inhibited the caffeine-induced spikes of [Ca2+]i in a "use-dependent" way. High affinity binding sites for [3H]ryanodine (Kd 3.3 nM, Bmax 26 fmol/mg protein) were also detected in membranes from chromaffin cells, supporting the presence of a caffeine- and ryanodine-sensitive CICR channel. Pretreatment of single cells with caffeine + ryanodine to reduce the size of the caffeine-sensitive Ca2+ compartment inhibited a subsequent spike of [Ca2+]i evoked by histamine, a D-myo-inositol 1,4,5-trisphosphate-forming agonist. This demonstrates that a significant portion of the Ca2+ released by histamine comes from a caffeine- and ryanodine-sensitive pool. Ryanodine inhibited by 50% the size of [Ca2+]i spikes evoked by repetitive stimulation with histamine and did so in a use-dependent manner. These data suggest that, in addition to D-myoinositol 1,4,5-trisphosphate, activation of a caffeine- and ryanodine-sensitive CICR channel participates in the generation of histamine-induced release of intracellular Ca2+.  相似文献   

16.
The intrasynaptosomal free calcium concentration ([Ca2+]i) was measured in quin2-loaded synaptosomes prepared from rat cerebral cortex. Membrane-permeant cyclic adenosine-3',5'-monophosphate (cAMP) analogues [8-bromo-cyclic adenosine-3',5'-monophosphate (8-Br-cAMP) and dibutyryl-cyclic adenosine-3',5'-monophosphate (db-cAMP)] increased [Ca2+]i in a dose-dependent manner; The maximal increases were approximately 50% for 8-Br-cAMP and 35% for db-cAMP and occurred at approximately 10 microM with both analogues. Clonidine (1 microM) alone reduced [Ca2+]i by 26.5%; db-cAMP and 8-Br-cAMP attenuated this reduction to 14.2 and 8.2%, respectively. In contrast, the reduction (19.9%) in [Ca2+]i induced by the preferential kappa-opiate agonist dynorphin A(1-13) was not attenuated by the cAMP analogues; in fact, db-cAMP and 8-Br-cAMP potentiated the effect of dynorphin A(1-13) (1 microM), producing decreases in [Ca2+]i of 33.6 and 29.6%, respectively. We conclude that although alpha 2-adrenergic and kappa-opiate receptors both reduce [Ca2+]i, the alpha 2-adrenoceptor-mediated response and the kappa-opiate receptor-mediated response involve different effector mechanisms. It appears that presynaptic alpha 2-adrenoceptor agonist effects are linked to reductions in adenylate cyclase activity and cAMP production and a resultant increase in Ca2+ sequestration, Ca2+-channel blockade, or both. On the other hand, the kappa-opiate-mediated effects possibly involve an increase in cAMP production and a blockade of Ca2+ entry.  相似文献   

17.
Treatment of hepatocytes with agonists which act via the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), results in increases of cytosolic free Ca2+ [( Ca2+]i) which are manifest as a series of discrete [Ca2+]i transients or oscillations. With increasing agonist dose [Ca2+]i oscillation frequency increases and the initial latent period decreases, but the amplitude of the [Ca2+]i oscillations remains constant. Studies of these [Ca2+]i oscillations at the subcellular level have indicated that the [Ca2+]i changes do not occur synchronously throughout the cell, but initiate at a specific subcellular domain, adjacent to a region of the plasma membrane, and then propagate through the cell as a [Ca2+]i wave. For a given ceil, the locus of [Ca2+]i wave initiation is constant for every oscillation in a series and is also identical when the cell is sequentially stimulated with different agonists or when the phospholipase C-linked G protein is activated directly using AIF4-. The kinetics of the [Ca2+]i waves indicate that a Ca(2+)-activated mechanism is involved in propagating the oscillatory [Ca2+]i increases throughout the cell, and the data appear to be most consistent with a process of Ca(2+)-induced Ca2+ release. It is proposed that the ability to propagate [Ca2+]i oscillations into regions of the cell distal to the region in which the signal transduction apparatus is localized could serve an important function in allowing all parts of the cell to respond to the stimulus.  相似文献   

18.
J Wang  M Ren  J Han 《Peptides》1992,13(5):947-951
In enzymatically dissociated brain cells prepared from neonatal rats, KCl produced a significant increase in [Ca2+]i and this increase could be prevented by verapamil or nifedipine, known to block voltage-sensitive calcium channels. The opioid receptor agonists ohmefentanyl (OMF, mu agonist), [D-Pen2,D-Pen5]enkephalin (DPDPE, delta agonist), and 66A-078 (kappa agonist) produced a marked suppression of the Ca2+ influx induced by high K+ depolarization. The suppressive effect of OMF, DPDPE, and 66A-078 on the high K(+)-induced increase in [Ca2+]i was markedly reversed by their respective antagonists beta-funaltrexamine (beta-FNA), ICI174864, and nor-binaltorphimine (nor-BNI). Cholecystokinin octapeptide (CCK-8), at concentrations of 0.3, 3.0, and 30 nM, dose-dependently mobilized Ca2+ from intracellular stores. While CCK-8 30 nM did not affect significantly the increase of [Ca2+]i following high K+, it did reverse the suppression of the high K(+)-induced increase in [Ca2+]i by the mu agonist OMF and the kappa agonist 66A-078, but not that by the delta agonist DPDPE. The results suggested that while opioid ligands suppress [Ca2+]i by blocking voltage-operated Ca2+ influx, the antiopioid effect of CCK-8 seems to be operated via mobilization of Ca2+ from intracellular stores.  相似文献   

19.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

20.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号