首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reactive oxygen species can damage most cellular components, but DNA appears to be the most sensitive target of these agents. Here we present the first evidence of DNA protection against the toxic and mutagenic effects of oxidative damage in metabolically active cells: direct protection of DNA by Dps, an inducible nonspecific DNA-binding protein from Escherichia coli. We demonstrate that in a recA-deficient strain, expression of Dps from an inducible promoter prior to hydrogen peroxide challenge increases survival and reduces the number of chromosomal single-strand breaks. dps mutants exhibit increased levels of the G x C-->T x A mutations characteristic of oxidative damage after treatment with hydrogen peroxide. In addition, expression of Dps from the inducible plasmid reduces the frequency of spontaneous G x C-->T x A and A x T-->T x A mutations and can partially suppress the mutator phenotype of mutM (fpg) and mutY alleles. In a purified in vitro system, Dps reduces the number of DNA single-strand breaks and Fpg-sensitive sites introduced by hydrogen peroxide treatment, indicating that the protection observed in vivo is a direct effect of DNA binding by Dps. The widespread conservation of Dps homologs among prokaryotes suggests that this may be a general strategy for coping with oxidative stress.  相似文献   

3.
Ferritins are ubiquitous iron (Fe) storage proteins that play a fundamental role in cellular Fe homeostasis. The enteric pathogen Salmonella enterica serovar Typhimurium possesses four ferritins: bacterioferritin, ferritin A, ferritin B and Dps. The haem-containing bacterioferritin (Bfr) accounts for the majority of stored Fe, followed by ferritin A (FtnA). Inactivation of bfr elevates the intracellular free Fe concentration and enhances susceptibility to H2O2 stress. The DNA-binding Dps protein provides protection from oxidative damage without affecting the steady-state intracellular free Fe concentration. FtnB appears to be particularly important for the repair of oxidatively damaged Fe-sulphur clusters of aconitase and, in contrast to Bfr and FtnA, is required for Salmonella virulence in mice. Moreover, ftnB and dps are repressed by the Fe-responsive regulator Fur and induced under conditions of Fe limitation, whereas bfr and ftnA are maximally expressed when Fe is abundant. The absence of a conserved ferroxidase domain and the potentiation of oxidative stress by FtnB in some strains lacking Dps suggest that FtnB serves as a facile cellular reservoir of Fe2+.  相似文献   

4.
Dps, the nonspecific DNA-binding protein from starved cells, is the most abundant protein in stationary-phase Escherichia coli. Dps homologs are found throughout the bacteria and in at least one archaeal species. Dps has been shown to protect cells from oxidative stress during exponential-phase growth. During stationary phase, Dps organizes the chromosome into a highly ordered, stable nucleoprotein complex called the biocrystal. We show here that Dps is required for long-term stationary-phase viability under competitive conditions and that dps mutants have altered lag phases compared to wild-type cells. We also show that during stationary phase Dps protects the cell not only from oxidative stress but also from UV and gamma irradiation, iron and copper toxicity, thermal stress, and acid and base shock. The protective roles of Dps are most likely achieved through a combination of functions associated with the protein-DNA binding and chromosome compaction, metal chelation, ferroxidase activity, and regulation of gene expression.  相似文献   

5.
6.
Dps(DNAprotection during starvation)蛋白是原核生物中特有的一类具有铁离子结合和抗氧化损伤功能的重要蛋白。利用体外PCR扩增技术和体内同源重组方法,获得了耐辐射奇球菌(Deinococcus radiodurans)dps全基因(DRB0092)缺失突变株。对突变株和野生型分别进行不同浓度过氧化氢(H2O2)处理,结果表明:与野生型菌株R1相比,dps突变株在低浓度H2O2(≤10mmol/L)条件下存活率急剧下降,而高浓度(≥30mmol/L)下则完全致死。Native-PAGE活性染色结果显示,稳定生长期dps突变株体内两种过氧化氢酶(KatA和KatB)的活性较野生型R1分别上调2.3倍和2.6倍。通过质粒构建和大肠杆菌诱导表达,获得可溶性Dps蛋白。体外结合和DNA保护实验结果显示:Dps具有明显的DNA结合功能,并能保护质粒DNA免受羟自由基攻击。本研究证明,Dps蛋白在耐辐射奇球菌抗氧化体系中发挥重要作用,可能对该菌极端抗性机制有重要贡献。  相似文献   

7.
To survive in host cells, intracellular pathogens or symbiotic bacteria require protective mechanisms to overcome the oxidative stress generated by phagocytic activities of the host. By genomic library tagging, we cloned a dps (stands for DNA-binding protein from starved cells) gene of the symbiotic "Candidatus Legionella jeonii" organism (called the X bacterium) (dps(X)) that grows in Amoeba proteus. The gene encodes a 17-kDa protein (pI 5.19) with 91% homology to Dps and DNA-binding ferritin-like proteins of other organisms. The cloned gene complemented the dps mutant of Escherichia coli and conferred resistance to hydrogen peroxide. Dps(X) proteins purified from E. coli transformed with the dps(X) gene were in oligomeric form, formed a complex with pBlueskript SKII DNA, and protected the DNA from DNase I digestion and H(2)O(2)-mediated damage. The expression of the dps(X) gene in "Candidatus Legionella jeonii" was enhanced when the host amoeba was treated with 2 mM H(2)O(2) and by phagocytic activities of the host cell. These results suggested that the Dps protein has a function protective of the bacterial DNA and that its gene expression responds to oxidative stress generated by phagocytic activities of the host cell. With regard to the fact that invasion of Legionella sp. into respiratory phagocytic cells causes pneumonia in mammals, further characterization of dps(X) expression in the Legionella sp. that multiplies in a protozoan host in the natural environment may provide valuable information toward understanding the protective mechanisms of intracellular pathogens.  相似文献   

8.
DNA-binding protein from starved cells (Dps) is a member of ferritin-like proteins that exhibit properties of nonspecific DNA binding and iron oxidation and storage. Although studies of Dps from many bacterial species have been reported, no investigations on Dps from fish pathogens have been documented. In this study, we examined the biological function of two Dps proteins, Dps1 and Dps2, from Edwardsiella tarda, an important fish bacterial pathogen that can also infect humans. Dps1 and Dps2 are, respectively, 163- and 174-residue in length and each contains the conserved ferroxidase center of Dps. Expression of dps1 and dps2 was growth phase-dependent and reached high levels in stationary phase. Purified recombinant Dps1 and Dps2 were able to mediate iron oxidation by H(2)O(2) and bind DNA. Compared to the wild type strain, (i) the dps1 mutant (TXDps1) and the dps2 mutant (TXDps2) were unaffected in growth, while the dps2 mutant with interfered dps1 expression (TXDps2RI) exhibited a prolonged lag phase; (ii) TXDps1, TXDps2, and especially TXDps2RI were significantly reduced in H(2)O(2) and UV tolerance and impaired in the capacity to invade into host tissues and replicate in head kidney macrophages; (iii) TXDps1, TXDps2, and TXDps2RI induced stronger macrophage respiratory burst activity and thus were defective in the ability to block the bactericidal response of macrophages. Taken together, these results indicate that Dps1 and Dps2 are functional analogues that possess ferroxidase activity and DNA binding capacity and are required for optimum oxidative stress resistance and full bacterial virulence.  相似文献   

9.
We identified and characterized the iron-binding protein Dps from Campylobacter jejuni. Electron microscopic analysis of this protein revealed a spherical structure of 8.5 nm in diameter, with an electron-dense core similar to those of other proteins of the Dps (DNA-binding protein from starved cells) family. Cloning and sequencing of the Dps-encoding gene (dps) revealed that a 450-bp open reading frame (ORF) encoded a protein of 150 amino acids with a calculated molecular mass of 17,332 Da. Amino acid sequence comparison indicated a high similarity between C. jejuni Dps and other Dps family proteins. In C. jejuni Dps, there are iron-binding motifs, as reported in other Dps family proteins. C. jejuni Dps bound up to 40 atoms of iron per monomer, whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H(2)O(2) or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.  相似文献   

10.
To study the impact of nutritional factors on protein expression of intestinal bacteria, gnotobiotic mice monoassociated with Escherichia coli K-12 were fed three different diets: a diet rich in starch, a diet rich in nondigestible lactose, and a diet rich in casein. Two-dimensional gel electrophoresis and electrospray-tandem mass spectrometry were used to identify differentially expressed proteins of bacteria recovered from small intestine and cecum. Oxidative stress response proteins such as AhpF, Dps, and Fur, all of which belong to the oxyR regulon, were upregulated in E. coli isolates from mice fed the lactose-rich diet. Luciferase reporter gene assays demonstrated that osmotic stress caused by carbohydrates led to the expression of ahpCF and dps, which was not observed in an E. coli ΔoxyR mutant. Growth of ahpCF and oxyR deletion mutants was strongly impaired when nondigestible sucrose was present in the medium. The wild-type phenotype could be restored by complementation of the deletions with plasmids containing the corresponding genes and promoters. The results indicate that some OxyR-dependent proteins play a major role in the adaptation of E. coli to osmotic stress. We conclude that there is an overlap of osmotic and oxidative stress responses. Mice fed the lactose-rich diet possibly had a higher intestinal osmolality, leading to the upregulation of OxyR-dependent proteins, which enable intestinal E. coli to better cope with diet-induced osmotic stress.  相似文献   

11.
An Escherichia coli O157:H7 dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log(10)-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log(10)-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log(10) CFU/ml while the parent strain decreased by approximately 2 log(10) CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.  相似文献   

12.
13.
Borrelia burgdorferi survives in an enzootic cycle, and Dps proteins protect DNA against damage during starvation or oxidative stress. The role of a Dps homologue encoded by Borrelia in spirochaete survival was assessed. Dps-deficient spirochaetes were infectious in mice via needle-inoculation at the dose of 10(5) spirochaetes. Larval ticks successfully acquired Dps-deficient spirochaetes via a blood meal on mice. However, after extended periods within unfed nymphs, the Dps-deficient spirochaetes failed to be transmitted to a new host when nymphs fed. Our data suggest that Dps functions to protect the spirochaetes during dormancy in unfed ticks, and in its absence, the spirochaetes become susceptible during tick feeding. dps is differentially expressed in vivo- low in mice and high in ticks - but constitutively expressed in vitro, showing little change during growth or in response to oxidative stress. Borrelia Dps forms a dodecameric complex capable of sequestering iron. The Dps-deficient spirochaetes showed no defect in starvation and oxidative stress assays, perhaps due to the lack of iron in spirochaetes grown in vitro. Dps is critical for spirochaete persistence within ticks, and strategies to interfere with Dps could potentially reduce Borrelia populations in nature and thereby influence the incidence of Lyme disease.  相似文献   

14.

Background  

All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells). Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column.  相似文献   

15.
The HtrA stress response protein has been shown to play a role in the virulence of a number of pathogens. For some organisms, htrA mutants are attenuated in the animal model and can be used as live vaccines. A Yersinia pestis htrA orthologue was identified, cloned and sequenced, showing 86% and 87% similarity to Escherichia coli and Salmonella typhimurium HtrAs. An isogenic Y. pestis htrA mutant was constructed using a reverse genetics approach. In contrast to the wild-type strain, the mutant failed to grow at an elevated temperature of 39 degrees C, but showed only a small increase in sensitivity to oxidative stress and was only partially attenuated in the animal model. However, the mutant exhibited a different protein expression profile to that of the wild-type strain when grown at 28 degrees C to simulate growth in the flea.  相似文献   

16.
During exponential growth, the level of Dps transiently increases in response to oxidative stress to sequester and oxidize Fe2+, which would otherwise lead to hydroxyl radicals that damage the bacterial chromosome. We report that Dps specifically interacts with DnaA protein by affinity chromatography and a solid phase binding assay, requiring the N-terminal region of DnaA to interact. In vitro , Dps inhibits DnaA function in initiation by interfering with strand opening of the replication origin. Comparing isogenic dps + and dps :: kan strains by flow cytometry and by quantitative polymerase chain reaction assays at either the chromosomally encoded level, or at an elevated level encoded by an inducible plasmid, we show that Dps causes less frequent initiations. Results from genetic experiments support this conclusion. We suggest that Dps acts as a checkpoint during oxidative stress to reduce initiations, providing an opportunity for mechanisms to repair oxidative DNA damage. Because Dps does not block initiations absolutely, duplication of the damaged DNA is expected to increase the genetic variation of a population, and the probability that genetic adaptation leads to survival under conditions of oxidative stress.  相似文献   

17.
The fur homologue in Borrelia burgdorferi   总被引:2,自引:0,他引:2  
  相似文献   

18.
The expression of genes coding for determinants of DNA topology in the facultative intracellular pathogen Salmonella typhimurium was studied during adaptation by the bacteria to the intracellular environment of J774A.1 macrophage-like cells. A reporter plasmid was used to monitor changes in DNA supercoiling during intracellular growth. Induction of the dps and spv genes, previously shown to be induced in the macrophage, was detected, as was expression of genes coding for DNA gyrase, integration host factor and the nucleoid-associated protein H-NS. The topA gene, coding for the DNA relaxing enzyme topoisomerase I, was not induced. Reporter plasmid data showed that bacterial DNA became relaxed following uptake of S. typhimurium cells by the macrophage. These data indicate that DNA topology in S. typhimurium undergoes significant changes during adaptation to the intracellular environment. A model describing how this process may operate is discussed.  相似文献   

19.
20.
The ferritin-like DNA-binding protein from starved cells (Dps) family proteins are present in a number of pathogenic bacteria. Dps in the enterohepatic pathogen, Helicobacter hepaticus is characterized and a H. hepaticus dps mutant was generated by insertional mutagenesis. While the wild type H. hepaticus cells were able to survive in an atmosphere containing up to 6.0% O2, the dps mutant failed to grow in 3.0% O2, and it was also more sensitive to oxidative reagents like H2O2, cumene hydroperoxide and t-butyl hydroperoxide. Upon air exposure, the dps cells had more damaged DNA than the wild type; they became coccoid or lysed and they contained ∼6-fold higher amount of 8-oxoguanine (8-oxoG) DNA lesions than wild type cells. Purified H. hepaticus Dps was shown to be able to bind both iron and DNA. The iron-loaded form of Dps protein had much greater DNA binding ability than the native Dps or the iron-free Dps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号