首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Sorting of protein A to the staphylococcal cell wall.   总被引:72,自引:0,他引:72  
O Schneewind  P Model  V A Fischetti 《Cell》1992,70(2):267-281
The cell wall of gram-positive bacteria can be thought of as representing a unique cell compartment, which contains anchored surface proteins that require specific sorting signals. Some biologically important products are anchored in this way, including protein A and fibronectin binding protein of Staphylococcus aureus and streptococcal M protein. Studies of staphylococcal protein A and Escherichia coli alkaline phosphatase show that the signal both necessary and sufficient for cell wall anchoring consists of an LPXTGX motif, a C-terminal hydrophobic domain, and a charged tail. These sequence elements are conserved in many surface proteins from different gram-positive bacteria. We propose the existence of a hitherto undescribed sorting mechanism that positions proteins on the surface of gram-positive bacteria.  相似文献   

2.
Many strains of Streptococcus pyogenes are known to express a receptor for IgA. The complete nucleotide sequence of the gene for such a receptor, protein Arp4, has been determined. The deduced amino acid sequence of 386 residues includes a signal sequence of 41 amino acids and a putative membrane anchor region, both of which are homologous to similar regions in other streptococcal surface proteins. The processed form of the IgA receptor has a length of 345 amino acids and a calculated molecular weight of 39544. The N-terminal sequence of the processed form is different from that previously found for a similar IgA receptor isolated from a S. pyogenes strain of type M60. The sequence of protein Arp4 shows extensive homology to the C-terminal half of streptococcal M proteins, but not to the streptococcal IgG receptor protein G or staphlyococcal protein A. Apart from the membrane anchor, this homology includes a sequence of 119 amino acid residues containing three repeated units and a 54-residue sequence without repeats. The protein expressed in Escherichia coli is found in the periplasmic space, in which it constitutes the major protein. Protein Arp4 is the first example of a surface protein that has both immunoglobulin-binding capacity and structural features characteristic of M proteins.  相似文献   

3.
The gene for protein H, a novel bacterial cell wall protein with specific affinity for human IgG Fc, was cloned from a group A Streptococcus and expressed in Escherichia coli. Recombinant E. coli cells produced two forms of a human IgG Fc-binding protein, one with an apparent Mr of 42 kDa in a periplasmic fraction and the other with an apparent Mr of 45 kDa in a mixed fraction of cytoplasms and membranes. Both 42-kDa and 45-kDa protein preparations similarly bound to human IgG1 to IgG4, human IgG Fc, and rabbit IgG, but not to IgG of mouse, rat, bovine, sheep, goat, and human IgA, IgD, IgE, and IgM. The complete nucleotide sequence of the cloned 1.8-kb DNA fragment was determined. An open reading frame encoded a hypothetical protein of 376 amino acid residues (Mr = 42,498). The N-terminal amino acid sequence, consisting of 41 residues, which was removed post-translationally had typical characteristics of Gram-positive bacterial signal peptides. Thus, the mature form of protein H was suggested to consist of 335 residues (Mr = 38,162). There were 3 repeated sequences consisting of 42 residues that were highly homologous to those of protein Arp, an IgA-binding streptococcal cell wall protein, and streptococcal M6 and M24 proteins. The C-terminal amino acid sequence consisting of 93 residues, directly following the repeated sequences, was also highly homologous to that of M6 and M24 proteins. No sequence homology was found between protein H and protein A or protein G, two other IgG-binding bacterial cell wall proteins.  相似文献   

4.
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.  相似文献   

5.
Gene for an immunoglobulin-binding protein from a group G streptococcus.   总被引:45,自引:13,他引:32       下载免费PDF全文
The gene (spg) for an immunoglobulin G (IgG)-binding protein from a Streptococcus clinical isolate of Lancefield group G was cloned and expressed in Escherichia coli. The complete nucleotide sequence of the gene and 5'-flanking sequences was determined. The DNA sequence includes an open reading frame which encodes a hypothetical protein of 448 amino acid residues (Mr = 47,595). The 5' end of this open reading frame encodes a sequence resembling a typical secretion signal sequence, and the remainder of the encoded protein has features reminiscent of staphylococcal protein A and of streptococcal M6 protein, including repeated sequences and a similar C-terminal structure. Aside from this C-terminal structure, the encoded protein has little direct amino acid sequence homology to either protein A or M6 protein. In E. coli, the cloned gene directs the synthesis of a protein which binds to immunoglobulins, including rabbit immunoglobulin, goat IgG, and human IgG3(lambda). Its binding properties are similar to those of the protein G described by Bj?rck and Kronvall (L. Bj?rck and G. Kronvall, J. Immunol. 133:969-974, 1984), a type III Fc receptor from a group G streptococcus.  相似文献   

6.
Group A Streptococcus pyogenes has surface-located fibronectin (Fn)-binding proteins known to be a major virulence factor, which adheres to and invades host cells. We present a novel Fn-binding protein of group A streptococcus serotype M3 and M18 strains isolated from patients with toxic shock-like syndrome (TSLS). By searching the whole genome sequence of an M3 strain from a TSLS patient, an open reading frame was found among the putative surface proteins. It possessed an LPXTG motif and Fn-binding repeat domains in the C-terminal region and was designated as FbaB (Fn-binding protein of group A streptococci type B). The fbaB gene was found in all M3 and M18 strains examined, although not in other M serotypes. Furthermore, FbaB protein was expressed on the cell surface of TSLS strains but not on non-TSLS ones. Enzyme-linked immunosorbent assay and ligand blotting revealed that recombinant FbaB exhibits a strong Fn-binding ability. An FbaB-deficient mutant strain showed 6-fold lower adhesion and invasion efficiencies to HEp-2 cells than the wild type. Moreover, mortality was decreased in mice infected with the mutant strain in comparison to the wild type. These data suggest that FbaB is etiologically involved in the development of invasive streptococcal diseases.  相似文献   

7.
A gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase Al were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.  相似文献   

8.
Structure of the IgG-binding regions of streptococcal protein G.   总被引:29,自引:0,他引:29       下载免费PDF全文
The gene encoding the IgG-binding protein G from Streptococcus G148 was isolated by molecular cloning. A subclone containing a 1.5-kb insert gave a functional product in Escherichia coli. Protein analysis of affinity-purified polypeptides revealed two gene products, both smaller than protein G spontaneously released from streptococci, but with identical IgG-binding properties. The complete nucleotide sequence of the insert revealed a repeated structure probably evolved through duplications of fragments of different sizes. The deduced amino acid sequence revealed an open reading frame extending throughout the insert, terminating in a TAA stop codon. Analysis of the two gene products by N-terminal amino acid determination suggests that two different TTG codons are recognized in E. coli for initiation of translation to yield the two products. Based on these results several truncated gene constructions were expressed and analysed. The results suggest that the C-terminal part of streptococcal protein G consists of three IgG-binding domains followed by a region which anchors the protein to the cell surface. Structural and functional comparisons with streptococcal M protein and staphylococcal protein A have been made.  相似文献   

9.
Streptococcus gordonii (S. gordonii) has been used as a gram-positive bacterial expression vector for secreted or surface-anchored recombinant proteins. Fusion of the gram-positive bacterial N-terminal signal sequence to the target protein is all that is required for efficient export. This system is termed SPEX for Surface Protein EXpression and has been used to express proteins for a variety of uses. In this study, the SPEX system has been further developed by the construction of vectors that express polyhistidine-tagged fusion proteins. SPEX vectors were constructed with an N-terminal or C-terminal histidine tag. The C-repeat region (CRR) from Streptococcus pyogenes M6 protein and the Staphylococcus aureus nuclease A (NucA) enzyme were tested for expression. The fusion proteins were purified using metal affinity chromatography (MAC). Results show that the fusion proteins were expressed and secreted from S. gordonii with the His tag at either the N- or C-terminal position and could be purified using MAC. The M6 fusions retained immunoreactivity after expression and purification as determined by immunoblots and ELISA analyses. In addition, NucA fusions retained functional activity after MAC purification. The M6-His and NucA-His fusions were purified approximately 15- and 10-fold respectively with approximately 30% recovery of protein using MAC. This study shows that the polyhistidine tag in either the N- or C-terminal position is a viable way to purify secreted heterologous proteins from the supernatant of recombinant S. gordonii cultures. This study further illustrates the value of the SPEX system for secreted expression and purification of proteins.  相似文献   

10.
Tn919 is a 15- to 16-kilobase (kb) tetracycline resistance conjugative transposon that was originally isolated from Streptococcus sanguis FC1. The tetracycline resistance determinant (tet) was found on a 4.2-kb HindII fragment by in vitro deletion analysis. This fragment was subcloned to a pWV01 origin capable of directing replication in Escherichia coli, Bacillus subtilis, and Streptococcus lactis, and expression was observed in all three genera. In all cases, expression was weaker when only the 4.2-kb cloned fragment rather than the full transposon was present. The resistance gene is of the streptococcal tetM class and codes for a protein of approximately 70 kilodaltons. The restriction map resembles that of the tetM gene of Tn1545 (P. Martin, P. Trieu-Cuot, and P. Courvalin, Nucleic Acids Res. 14:7047-7058, 1986), which codes for a protein of 72.5 kilodaltons. A number of transposon-derived promoter-bearing fragments were also cloned and sequenced. These closely resemble the consensus sequence of E. coli and B. subtilis promoters. Fusion experiments with a truncated lacZ gene indicate the possibility of an open reading frame for one of the promoters.  相似文献   

11.
Analysis of the sequence for the gene encoding PspA (pneumococcal surface protein A) of Streptococcus pneumoniae revealed the presence of four distinct domains in the mature protein. The structure of the N-terminal half of PspA was highly consistent with that of an alpha-helical coiled-coil protein. The alpha-helical domain was followed by a proline-rich domain (with two regions in which 18 of 43 and 5 of 11 of the residues are prolines) and a repeat domain consisting of 10 highly conserved 20-amino-acid repeats. A fourth domain consisting of a hydrophobic region too short to serve as a membrane anchor and a poorly charged region followed the repeats and preceded the translation stop codon. The C-terminal region of PspA did not possess features conserved among numerous other surface proteins, suggesting that PspA is attached to the cell by a mechanism unique among known surface proteins of gram-positive bacteria. The repeat domain of PspA was found to have significant homology with C-terminal repeat regions of proteins from Streptococcus mutans, Streptococcus downei, Clostridium difficile, and S. pneumoniae. Comparisons of these regions with respect to functions and homologies suggested that, through evolution, the repeat regions may have lost or gained a mechanism for attachment to the bacterial cell.  相似文献   

12.
13.
The nucleotide sequence has been determined for the Streptococcus mutans wall-associated protein A (wapA) gene from serotype c strains Ingbritt and GS5. The nucleotide sequence for each wapA gene was virtually identical, although the gene from strain GS5 contained a 24 base pair deletion. A 29 amino acid signal peptide was specified by each wapA gene with a mature protein of 424 amino acids (Mr, 45,276) for strain Ingbritt and 416 amino acids (Mr, 44,846) for strain GS5. In the C-terminal region of the wall-associated protein A, considerable sequence similarity was found with the membrane anchor region of proteins from other Gram-positive organisms such as the group A streptococcal M protein and the group G streptococcal IgG binding protein. Adjacent to the proposed membrane anchor is a highly hydrophilic region which may span the cell wall; both sequence data and experimental evidence indicate the existence of a region immediately outside the wall at which proteolytic cleavage occurs to release antigen A of Mr 29,000 into the culture supernatant. Thus, the wall-associated protein A is a precursor of the 29,000 Mr antigen A.  相似文献   

14.
The M1T1 strain remains the most frequently isolated strain from group A streptococcal (GAS) infection cases worldwide. We previously reported that M1T1 differs from the fully sequenced M1 SF370 strain. To better understand the reason for the persistence and increased virulence of M1T1, we analysed its secreted proteome and identified two virulence proteins that are not present in the sequenced M1 SF370 strain: streptococcal pyrogenic exotoxin A (SpeA) and a streptodornase D (SdaD) homologue. In the present study, we determined the nucleotide sequence of the M1T1 streptodornase and found that its deduced amino acid sequence is highly similar to other streptococcal streptodornases, and is most closely related to the SdaD of GAS strain M49. M1T1 Sda shares two highly conserved domains with several DNases and putative DNases in streptococci; however, it possesses a unique C-terminal amino acid sequence. Thus, we named the protein Sda1, and we detected the presence of the sda1 gene in 16 M1T1 clinical isolates. The cloned and expressed Sda1 degrades both streptococcal and mammalian DNA at physiological pH. Amino acid similarity analyses of known GAS deoxyribonucleases suggest that Sda1 may be a chimeric protein created through recombination events. Moreover, a natural mutation that resulted in longer Sda1 and SdaD as compared to other GAS DNases was found to confer increased activity on the protein. Analysis of the sequences flanking sda1 determined that it is carried by a prophage or a prophage-like element inserted in the tRNA-Ser gene of M1T1 GAS. Ongoing studies in our laboratory aim to determine the contribution of Sda1 to the virulence of this globally disseminated M1T1 strain.  相似文献   

15.
Bacterial surface proteins are important molecules in the infectivity and survival of pathogens. Surface proteins on gram-positive bacteria have been shown to attach via a transpeptidase, termed sortase, that cleaves an LPXTG sequence found close to the C termini of nearly all surface proteins on these bacteria. We previously identified a unique enzyme (LPXTGase) from Streptococcus pyogenes that also cleaves the LPXTG motif with a catalytic activity higher than that of sortase, suggesting that it plays an important role in the attachment process. We have now purified and characterized an LPXTGase from Staphylococcus aureus and found that it has both similar and unique features compared to the S. pyogenes enzyme. The S. aureus enzyme is glycosylated and contains unusual amino acids, like its streptococcal counterpart. Like the streptococcal enzyme, staphylococcal LPXTGase has an overrepresentation of amino acids found in the peptidoglycan, i.e., glutamine/glutamic acid, glycine, alanine, and lysine, and furthermore, we find that these amino acids are present in the enzyme at precisely the same ratio at which they are found in the peptidoglycan for the respective organism. This suggests that enzymes responsible for wall assembly may also play a role in the construction of LPXTGase.  相似文献   

16.
The M6 protein from Streptococcus pyogenes is the best-characterized member of a family of cell envelope-associated proteins. Based on the observation that the C-terminal sorting signals of these proteins can drive cell wall anchoring of heterologous unanchored proteins, we have cloned and expressed the emm6 structural gene for the M6 protein in various lactic acid bacteria (LAB). The emm6 gene was successfully expressed from lactococcal promoters in several Lactococcus lactis strains, an animal-colonizing Lactobacillus fermentum strain, Lactobacillus sake, and Streptococcus salivarius subsp. thermophilus. The M6 protein was efficiently anchored to the cell wall in all strains tested. In lactobacilli, essentially all detectable M6 protein was cell wall associated. These results suggest the feasibility of using the C-terminal anchor moiety of M6 for protein surface display in LAB.  相似文献   

17.
18.
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.  相似文献   

19.
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.  相似文献   

20.
Erysipelothrix rhusiopathiae is a gram-positive bacterium that causes erysipelas in animals and erysipeloid in humans. We found two adhesive surface proteins of E. rhusiopathiae and determined the nucleotide sequences of the genes, which were colocalized and designated rspA and rspB. The two genes were present in all of the serovars of E. rhusiopathiae strains examined. The deduced RspA and RspB proteins contain the C-terminal anchoring motif, LPXTG, which is preceded by repeats of consensus amino acid sequences. The consensus sequences are composed of 78 to 92 amino acids and repeat 16 and 3 times in RspA and RspB, respectively. Adhesive surface proteins of other gram-positive bacteria, including Listeria monocytogenes adhesin-like protein, Streptococcus pyogenes protein F2 and F2-like protein, Streptococcus dysgalactiae FnBB, and Staphylococcus aureus Cna, share the same consensus repeats. Furthermore, the N-terminal regions of RspA and RspB showed characteristics of the collagen-binding domain that was described for Cna. RspA and RspB were expressed in Escherichia coli as histidine-tagged fusion proteins and purified. The recombinant proteins showed a high degree of capacity to bind to polystyrene and inhibited the binding of E. rhusiopathiae onto the abiotic surface in a dose dependent manner. In a solid-phase binding assay, both of the recombinant proteins bound to fibronectin, type I and IV collagens, indicating broad spectrum of their binding ability. It was suggested that both RspA and RspB were exposed on the cell surface of E. rhusiopathiae, as were the bacterial cells agglutinated by the anti-RspA immunoglobulin G (IgG) and anti-RspB IgG. RspA and RspB were present both in surface-antigen extracts and the culture supernatants of E. rhusiopathiae Fujisawa-SmR (serovar 1a) and SE-9 (serovar 2). The recombinant RspA, but not RspB, elicited protection in mice against experimental challenge. These results suggest that RspA and RspB participate in initiation of biofilm formation through their binding abilities to abiotic and biotic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号