共查询到20条相似文献,搜索用时 0 毫秒
1.
K S Cole 《The Journal of general physiology》1975,66(2):133-138
Six methods have given squid axoplasm resistivities of from 1.0 to 6.9 times seawater (X SW), so another was tried. A 100-mum platinized electrode was to be inserted from each end of an axion in iso-osmotic sucrose and impedance between them measured vs. separation. But observations that the resistance of axons in sucrose increased steadily ruled this out. Axoplasm from two or three axons was transferred to a glass capillary, 0.6 mm ID, and the 1-kHz series resistance and reactance were measured at electrode separations from 16 to 2 mm. The resistance was linear vs. distance, giving the resistivity, while the reactance was nearly constant, implying constant electrode contributions. Frequency runs from 10 Hz to 30 kHz at 10 mm gave electrode impedances of the form (jomega)-alpha, allowing 1-2% effects on the axoplasm resistivities. In nine experiments, one was discarded for cause, the range and average resistivities were, respectively, 1.2-1.6 and 1.4 times those of artificial seawater (19.7 omegacm at 24.4 degrees C). No single cause for the variability was apparent. These experiments essentially confirm the means and variations of two early experiments with intact axons and recent results with a single internal electrode to give overall resistivities of 1.4 +/- 0.2 X SW. 相似文献
2.
3.
Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C 总被引:6,自引:0,他引:6
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. 相似文献
4.
Characterization of a cyclic nucleotide- and calcium-independent neurofilament protein kinase activity in axoplasm from the squid giant axon 总被引:6,自引:0,他引:6
The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies. 相似文献
5.
Zemlickova E Johannes FJ Aitken A Dubois T 《Biochemical and biophysical research communications》2004,316(1):39-47
The protein kinase C-potentiated inhibitor protein of 17kDa, called CPI-17, specifically inhibits myosin light chain phosphatase (MLCP). Phosphorylation of Thr-38 in vivo highly potentiates the ability of CPI-17 to inhibit MLCP. Thr-38 has been shown to be phosphorylated in vitro by a number of protein kinases including protein kinase C (PKC), Rho-associated coiled-coil kinase (ROCK), and protein kinase N (PKN). In this study we have focused on the association of protein kinases with CPI-17. Using affinity chromatography and Western blot analysis, we found interaction with all PKC isotypes and casein kinase I isoforms, CKIalpha and CKI. By contrast, ROCK and PKN did not associate with CPI-17, suggesting that PKC may be the relevant kinase that phosphorylates Thr-38 in vivo. CPI-17 interacted with the cysteine-rich domain of PKC and was phosphorylated by all PKC isotypes. We previously found that CPI-17 co-purified with casein kinase I in brain suggesting they are part of a complex and we now show that CPI-17 associates with the kinase domain of CKI isoforms. 相似文献
6.
Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified. 相似文献
7.
Characterization of neurofilament-associated protein kinase activities from bovine spinal cord 总被引:3,自引:0,他引:3
1. A neurofilament-enriched preparation from bovine spinal cord contains endogenous protein kinases that phosphorylate high, middle, and low molecular weight neurofilament subunits (NF-H, NF-M, and NF-L), as well as certain other endogenous and exogenous substrates. 2. Most of this associated kinase activity can be separated from the neurofilament subunits and the bulk of the protein by extraction of the neurofilament preparation with 0.8 M KCl. Assays using specific exogenous substrates, activators, and inhibitors for known kinases reveal significant levels of Ca2(+)-calmodulin-dependent, cyclic nucleotide-dependent, Ca2(+)-phosphatidylserine diglyceride-dependent, and regulator-independent kinase activities in the high-salt extract. 3. Fractionation of the salt extract on a gel filtration column resolves a regulator-independent kinase activity identified by its ability to phosphorylate purified NF-M. This preparation can phosphorylate all three neurofilament proteins either in purified form or in the assembled form, as well as alpha-casein. Only the regulator-independent kinase activity in this fraction is responsible for the phosphorylation of neurofilament proteins. 4. While this partially purified kinase activity does not show a strong substrate specificity between the three neurofilament subunits, the phosphorylation pattern it produces upon incubation with salt-extracted neurofilaments is similar to the regulator-independent phosphorylation pattern found in the original neurofilament preparation and, thus, represents a useful starting point for the further purification of this neurofilament-associated kinase activity. 相似文献
8.
Budding and fission yeast casein kinase I isoforms have dual-specificity protein kinase activity. 总被引:3,自引:1,他引:3 下载免费PDF全文
M F Hoekstra N Dhillon G Carmel A J DeMaggio R A Lindberg T Hunter J Kuret 《Molecular biology of the cell》1994,5(8):877-886
We have examined the activity and substrate specificity of the Saccharomyces cerevisiae Hrr25p and the Schizosaccharomyces pombe Hhp1, Hhp2, and Cki1 protein kinase isoforms. These four gene products are isotypes of casein kinase I (CKI), and the sequence of these protein kinases predicts that they are protein serine/threonine kinases. However, each of these four protein kinases, when expressed in Escherichia coli in an active form, was recognized by anti-phosphotyrosine antibodies. Phosphoamino acid analysis of 32P-labeled proteins showed phosphorylation on serine, threonine, and tyrosine residues. The E. coli produced forms of Hhp1, Hhp2, and Cki1 were autophosphorylated on tyrosine, and both Hhp1 and Hhp2 were capable of phosphorylating the tyrosine-protein kinase synthetic peptide substrate polymer poly-E4Y1. Immune complex protein kinases assays from S. pombe cells showed that Hhp1-containing precipitates were associated with a protein-tyrosine kinase activity, and the Hhp1 present in these immunoprecipitates was phosphorylated on tyrosine residues. Although dephosphorylation of Hhp1 and Hhp2 by Ser/Thr phosphatase had little effect on the specific activity, tyrosine dephosphorylation of Hhp1 and Hhp2 caused a 1.8-to 3.1-fold increase in the Km for poly-E4Y1 and casein. These data demonstrate that four different CKI isoforms from two different yeasts are capable of protein-tyrosine kinase activity and encode dual-specificity protein kinases. 相似文献
9.
An anti-yeast CKI antiserum was shown to cross-react with CKI isolated from Krebs II mouse ascites tumour cells. The mammalian CKI showed virtually the same molecular mass (app. 45 kDa) as the yeast enzyme. By immunofluorescence it could be shown that CKI is preferably located in the nucleolus. 相似文献
10.
11.
Translocation of intracellular organelles requires interaction with the cellular cytoskeleton, but the membrane and cytoskeletal proteins involved in movement are unknown. Here we show that highly purified synaptic vesicles from electric fish added to extruded squid axoplasm can show ATP-dependent movement. The movement is indistinguishable from that of endogenous vesicles and has a slight preference for the orthograde direction. In the presence of a nonhydrolyzable ATP analog, the synaptic vesicles bind to axoplasmic fibers but do not move. Elastase treatment of vesicles inhibits both binding and movement. We conclude that a protein component on the surface of cholinergic synaptic vesicles from electric fish is conserved during evolution and so can be recognized by the organelle-translocating machinery of the squid axon, resulting in ATP-dependent movement. Synaptic vesicles apparently retain the capacity for fast axonal transport, even after they reach their intracellular destination. 相似文献
12.
Human-immunodeficiency-virus-type-1-encoded Vpu protein is phosphorylated by casein kinase II. 总被引:3,自引:0,他引:3
U Schubert T Schneider P Henklein K Hoffmann E Berthold H Hauser G Pauli T Porstmann 《European journal of biochemistry》1992,204(2):875-883
Vpu as a human-immunodeficiency-virus-type-1-encoded 81-amino-acid integral-membrane protein was expressed in Escherichia coli using the inducible ptrc promoter of an ATG fusion vector. Recombinant Vpu is associated with membranes of E. coli and could be partially solubilized by detergents. Recombinant Vpu was phosphorylated in vitro with purified porcine casein kinase II (CKII) as well as with a CKII-related protein kinase found in cytoplasmic extracts of human and hamster cells. Recombinant Vpu associated with E. coli membranes has turned out to be the best substrate for in vitro phosphorylation with CKII. This reaction can be inhibited by heparin and the ATP analogue 5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (DRB), both known to be potent inhibitors of CKII. Radiolabelled gamma ATP and gamma GTP were used as phosphate donors in vitro phosphorylation of recombinant Vpu. In vivo phosphorylation of Vpu in HIV-1-infected H9 cells was also inhibited by DRB. We concluded therefrom that the Vpu protein is phosphorylated by the ubiquitous CKII in HIV-1-infected human host cells. Two seryl residues in the sequence of Vpu (position 52 and 56) correspond to the consensus S/TXXD/E for CKII. These potential phosphorylation sites are located within a well-conserved dodecapeptide of Vpu (residues 47-58), which is found in different HIV-1 strains as well as in a Vpu-like protein of SIVCPZ. Monoclonal and polyclonal antibodies directed against two different epitopes of Vpu were used for immunoprecipitation of Vpu from HIV-1-infected cells and for detection of Vpu in Western blot analyses. Vpu from HIV-1-infected cells as well as recombinant Vpu expressed in E. coli were determined by SDS/PAGE using 6 M urea to be 9 kDa, which corresponds to the calculated molecular mass of Vpu. 相似文献
13.
14.
Y Zick R W Rees-Jones G Grunberger S I Taylor V Moncada P Gorden J Roth 《European journal of biochemistry》1983,137(3):631-637
Insulin stimulates a kinase that phosphorylates tyrosines in the insulin receptor; this kinase is tightly associated with the insulin receptor itself. We now show that the insulin-stimulated casein kinase, present in solubilized, lectin-purified receptor preparations from rat liver, is indistinguishable from the insulin receptor kinase. As with phosphorylation of the insulin receptor, insulin selectively enhanced by 2-3-fold the phosphorylation of tyrosines in casein. The insulin-stimulated activities of both kinases were inactivated at 37 degrees C with the same t0.5 of 5 min and were identically affected by alkylating agents. Both receptor and casein kinase activities were specifically coprecipitated by anti-receptor antibodies or by insulin and anti-insulin antibodies. When the latter type of immune complexes were incubated with an excess of insulin, both kinase activities were quantitatively recovered. We therefore conclude that insulin-stimulated receptor and casein phosphorylations are probably catalyzed by a single enzyme which is tightly associated with the receptor itself. Now, by replacing casein for receptor as substrate, it is possible to measure the enzymatic activity of this receptor-related kinase itself, i.e. independent of the receptor as substrate. Detection of this activity is improved in the presence of certain alkylating agents. Use of artificial substrates (in combination with alkylating agents) is particularly important to dissect the functional components of the receptor complex, to study mechanisms of enzyme regulation and especially in situations where the available receptor for study is limited, e.g. fresh or cultured cells from patients. 相似文献
15.
K M Johnston S T Brady D van der Kooy J A Connolly 《Cell motility and the cytoskeleton》1987,7(2):110-115
Microtubules have been demonstrated to be a substrate for organelle transport and particle translocation in vitro and in vivo. Subsequent to a previous report of inhibition of axonal transport of exogenous tracers in vivo using antiserum NS-20 against tubulin (Johnston et al: Brain Res. 1986), we now show disruption of particle movement in extruded squid axoplasm using this unique immunological probe. Using video-enhanced contract-differential interference contrast (AVEC-DIC) microscopy, we examined the properties of particle movement along microtubules and demonstrated that both the velocity of particle movement and the numbers of particles moving are decreased in the presence of NS-20 antiserum or NS-20 affinity-purified antibodies but not in the presence of another antiserum against tubulin. The amount of microtubule substrate does not change in the presence of any of the antisera. In conclusion, we suggest that NS-20 antibodies bind near or at a site on the tubulin molecule which is critical in the mechanism of particle transport, and provide a direct immunological probe to examine the mechanism of microtubule involvement in axonal transport. 相似文献
16.
Hepatitis C virus (HCV) has a positive-strand RNA genome that encodes a polyprotein, which is post-translationally processed by cellular and viral proteinases into three structural and six non-structural (NS) proteins. The NS5A protein, expressed in mammalian cells, exists as two phosphorylated forms of 56 kDa and 58 kDa. In this study, we provide evidence for a stable association between NS5A and a protein kinase from rat-1 cells by affinity to immobilized glutathione-S-transferase (GST)-NS5A fusion protein. This protein kinase was associated through the N-terminus of NS5A and was not regulated by cell cycle. The GST-NS5A was also phosphorylated in vitro by the purified casein kinase II (CKII), a member of the CMCG kinase family. Since CKII and the NS5A-associated protein kinase have the same molecular size and property by In-gel kinase assay and an inhibitor treatment test, we conclude that HCV NS5A protein is phosphorylated by CKII. 相似文献
17.
The casein kinase I family in Wnt signaling. 总被引:7,自引:0,他引:7
The canonical Wnt-signaling pathway is critical for many aspects of development, and mutations in components of the Wnt pathway are carcinogenic. Recently, sufficiency tests identified casein kinase Iepsilon (CKIepsilon) as a positive component of the canonical Wnt/beta-catenin pathway, and necessity tests showed that CKIepsilon is required in vertebrates to transduce Wnt signals. In addition to CKIepsilon, the CKI family includes several other isoforms (alpha, beta, gamma, and delta) and their role in Wnt sufficiency tests had not yet been clarified. However, in Caenorhabditis elegans studies, loss-of-function of a CKI isoform most similar to alpha produced the mom phenotype, indicative of loss-of-Wnt signaling. In this report, we examine the ability of the various CKI isoforms to activate Wnt signaling and find that all the wild-type CKI isoforms do so. Dishevelled (Dsh), another positive component of the Wnt pathway, becomes phosphorylated in response to Wnt signals. All the CKI isoforms, with the exception of gamma, increase the phosphorylation of Dsh in vivo. In addition, CKI directly phosphorylates Dsh in vitro. Finally, we find that CKI is required in vivo for the Wnt-dependent phosphorylation of Dsh. These studies advance our understanding of the mechanism of Wnt action and suggest that more than one CKI isoform is capable of transducing Wnt signals in vivo. 相似文献
18.
Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I. 下载免费PDF全文
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein. 相似文献
19.
A 45-kDa protein kinase related to mitogen-activated protein kinase is activated in tobacco cells treated with a phorbol ester 总被引:2,自引:0,他引:2
Phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinases in animals, elicits the transient activation of a 45-kDa protein kinase in tobacco cell-suspension cultures. The 45-kDa protein kinase preferentially phosphorylates myelin basic protein (MBP), a general substrate for MAPK. Studies using cycloheximide indicated that protein synthesis is not required for the activation of the kinase. Treatment of tobacco cell extracts containing the activated kinase with either serine/threonine-specific or tyrosine-specific protein phosphatase abolished the kinase activity, which consequently appears to be regulated by phosphorylation. By using an immune complex kinase assay with antibodies specific for stress-responsive MAPKs, we show that the PMA-activated kinase is immunologically related to the wound-induced protein kinase (WIPK), and not to the salicylic acid-induced protein kinase (SIPK), two representative members of the tobacco MAPK family, known to be activated by extracellular stimuli. Furthermore, the activated kinase was recognized by phospho-specific MAPK antibodies. Collectively, these results indicate that phorbol ester promotes the activation of a 45-kDa protein kinase related to WIPK in tobacco cells. Activation of WIPK in response to PMA is associated with protein phosphorylation but not with an increase in protein level. 相似文献
20.
Galán-Caridad JM Calabokis M Uzcanga G Aponte F Bubis J 《Memórias do Instituto Oswaldo Cruz》2004,99(8):845-854
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract. 相似文献