共查询到20条相似文献,搜索用时 15 毫秒
1.
Homoprotocatechuate 2,3-dioxygenase isolated from Brevibacterium fuscum utilizes an active site Fe(II) and O(2) to catalyze proximal extradiol cleavage of the substrate aromatic ring. In contrast to other members of the ring cleaving dioxygenase family, the transient kinetics of the extradiol dioxygenase catalytic cycle have been difficult to study because the iron is nearly colorless and EPR silent. Here, it is shown that the reaction cycle kinetics can be monitored by utilizing the alternative substrate 4-nitrocatechol (4NC), which is also cleaved in the proximal extradiol position. Changes in the optical spectrum of 4NC occurring as a result of ionization, environmental changes, and ring cleavage allow both the substrate binding and product formation phases of the reaction to be studied. It is shown that substrate binding occurs in a four-step process probably involving binding to two ionization states of the enzyme at different rates. Following an initial rapid binding of the monoanionic 4NC in the active site, slower binding to the Fe(II) and conversion to the dianionic form occur. The bound dianionic 4NC reacts rapidly with O(2) in four additional steps, apparently occurring in sequence. On the basis of the optical properties of the intermediates, these steps are hypothesized to be O(2) binding to the iron, isomerization of the resulting complex, ring opening, and product release. The natural substrate appears to form the same intermediates but with much larger rate constants. These are the first transient intermediates to be reported for an extradiol dioxygenase reaction. 相似文献
2.
Y Kim B Choi J Lee H Chang K R Min 《Biochemical and biophysical research communications》1992,183(1):77-82
Three catechol 2,3-dioxygenases for biphenyl, naphthalene/salicylate, and toluene/xylene oxidation were cloned from Achromobacter xylosoxidans KF701, Pseudomonas putida (NAH7), and Pseudomonas sp. (pWWO). The cloned catechol 2,3-dioxygenases were identified by enzymatic activity assay in addition to yellow bands on polyacrylamide gel after electrophoresis and activity staining. All of the cloned catechol 2,3-dioxygenases exhibited their highest activities on catechol as a substrate compared with catechol derivatives including 4-chlorocatechol, 3-methylcatechol, and 4-methylcatechol. The cloned catechol 2,3-dioxygenases are not fused proteins but were significantly different from one another in their electrophoretic mobilities on nondenaturing 7.5%-polyacrylamide gel. 相似文献
3.
4.
Purification and properties of homoprotocatechuate 2,3-dioxygenase from Bacillus stearothermophilus. 总被引:2,自引:1,他引:2
下载免费PDF全文

M P Jamaluddin 《Journal of bacteriology》1977,129(2):690-697
The enzyme 3,4-dihydroxyphenylacetate:oxygen 2,3-oxidoreductase (decyclizing) (homoprotocatechuate 2,3-dioxygenase) was purified from the thermophilic organism Bacillus stearothermophilus, grown with j-hydroxyphenylacetic acid as a source of carbon. The enzyme appeared to be homogeneous as judged by disc-gel electrophoresis and sedimentation equilibrium measurements. The average molecular weight determined by three independent procedures was 106,000; the protein was globular and was dissociated in sodium dodecyl sulfate to give a species of molecular weight 33,000 to 35,000. The enzyme was fairly stable on heating and showed maximal activity at about 57 degrees C. An Arrhenius plot of Km for homoprotocatechuate was concave upward, with a break at 32 degrees C; an increase in delta H above this temperature was compensated by lower values of --delta S. Several properties of this enzyme are contrasted with those reported for homoprotocatechuate 2,3-dioxygenase purified by other workers from Pseudomonas ovalis. 相似文献
5.
Mbughuni MM Chakrabarti M Hayden JA Meier KK Dalluge JJ Hendrich MP Münck E Lipscomb JD 《Biochemistry》2011,50(47):10262-10274
Substrates homoprotocatechuate (HPCA) and O(2) bind to the Fe(II) of homoprotocatechuate 2,3-dioxygenase (FeHPCD) in adjacent coordination sites. Transfer of an electron(s) from HPCA to O(2) via the iron is proposed to activate the substrates for reaction with each other to initiate aromatic ring cleavage. Here, rapid-freeze-quench methods are used to trap and spectroscopically characterize intermediates in the reactions of the HPCA complexes of FeHPCD and the variant His200Asn (FeHPCD?HPCA and H200N?HPCA, respectively) with O(2). A blue intermediate forms within 20 ms of mixing of O(2) with H200N?HPCA (H200N(Int1)(HPCA)). Parallel mode electron paramagnetic resonance and Mo?ssbauer spectroscopies show that this intermediate contains high-spin Fe(III) (S = 5/2) antiferromagnetically coupled to a radical (S(R) = 1/2) to yield an S = 2 state. Together, optical and Mo?ssbauer spectra of the intermediate support assignment of the radical as an HPCA semiquinone, implying that oxygen is bound as a (hydro)peroxo ligand. H200N(Int1)(HPCA) decays over the next 2 s, possibly through an Fe(II) intermediate (H200N(Int2)(HPCA)), to yield the product and the resting Fe(II) enzyme. Reaction of FeHPCD?HPCA with O(2) results in rapid formation of a colorless Fe(II) intermediate (FeHPCD(Int1)(HPCA)). This species decays within 1 s to yield the product and the resting enzyme. The absence of a chromophore from a semiquinone or evidence of a spin-coupled species in FeHPCD(Int1)(HPCA) suggests it is an intermediate occurring after O(2) activation and attack. The similar Mo?ssbauer parameters for FeHPCD(Int1)(HPCA) and H200N(Int2)(HPCA) suggest these are similar intermediates. The results show that transfer of an electron from the substrate to the O(2) via the iron does occur, leading to aromatic ring cleavage. 相似文献
6.
KL Henderson VH Le EA Lewis JP Emerson 《Journal of biological inorganic chemistry》2012,17(7):991-994
Homoprotocatechuate 2,3-dioxygenase (HPCD) is a member of the extradiol dioxygenase family of non-heme iron enzymes. These enzymes catalyze the ring-cleavage step in the aromatic degradation pathway commonly found in soil bacteria. In this study, isothermal titration calorimetry (ITC) is used to measure the equilibrium constant (K?=?1.1?±?0.6?×?10(6)) and enthalpy change (ΔH?=?-17.0?±?1.7?kcal/mol) associated with homoprotocatechuate binding to HPCD. The ITC data are consistent with the release of approximately 2.6 protons upon binding of the substrate to HPCD. These results raise new questions regarding the relationships between substrate, protein, and the oxygen activation mechanism for this class of non-heme metalloenzymes. 相似文献
7.
Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. 总被引:14,自引:6,他引:14
下载免费PDF全文

We studied the degradation of toluene for bacteria isolated from hypoxic (i.e., oxygen-limited) petroleum-contaminated aquifers and compared such strains with other toluene degraders. Three Pseudomonas isolates, P. pickettii PKO1, Pseudomonas sp. strain W31, and P. fluorescens CFS215, grew on toluene when nitrate was present as an alternate electron acceptor in hypoxic environments. We examined kinetic parameters (K(m) and Vmax) for catechol 2,3-dioxygenase (C230), a key shared enzyme of the toluene-degradative pathway for these strains, and compared these parameters with those for the analogous enzymes from archetypal toluene-degrading pseudomonads which did not show enhanced, nitrate-dependent toluene degradation. C230 purified from strains W31, PKO1, and CFS215 had a significantly greater affinity for oxygen as well as a significantly greater rate of substrate turnover than found for the analogous enzymes from the TOL plasmid (pWW0) of Pseudomonas putida PaW1, from Pseudomonas cepacia G4, or from P. putida F1. Analysis of the nucleotide and deduced amino acid sequences of C23O from strain PKO1 suggests that this extradiol dioxygenase belongs to a new cluster within the subfamily of C23Os that preferentially cleave monocyclic substrates. Moreover, deletion analysis of the nucleotide sequence upstream of the translational start of the meta-pathway operon that contains tbuE, the gene that encodes the C230 of strain PKO1, allowed identification of sequences critical for regulated expression of tbuE, including a sequence homologous to the ANR-binding site of Pseudomonas aeruginosa PAO. When present in cis, this site enhanced expression of tbuE under oxygen-limited conditions. Taken together, these results suggest the occurrence of a novel group of microorganisms capable of oxygen-requiring but nitrate-enhanced degradation of benzene, toluene, ethylbenzene, and xylenes in hypoxic environments. Strain PKO1, which exemplifies this novel group of microorganisms, compensates for a low-oxygen environment by the development of an oxygen-requiring enzyme with kinetic parameters favorable to function in hypoxic environments, as well as by elevating synthesis of such an enzyme in response to oxygen limitation. 相似文献
8.
Li D Cai H Hou M Fu D Ma Y Luo Q Yuan X Lv M Zhang X Cong X Lv Z 《Cell biochemistry and function》2012,30(4):309-314
Indoleamine 2,3-dioxygenase (IDO) converts tryptophan to l-kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, to investigate the effects of IDO in carbon tetrachloride (CCl(4) )-induced hepatitis model, the levels of IDO enzymic activities in the mock group, the control group and the 1-methyl-D-tryptophan (1-MT)-treated group were confirmed by determination of l-kynurenine concentrations. Serum alanine aminotransferase levels in 1-MT-treated rats after CCl(4) injection significantly increased compared with those in mock and control groups. In CCl(4)-induced hepatitis models, tumour necrosis factor-α (TNF-α) is critical in the development of liver injury. The mRNA expression and secretion levels of TNF-α in the liver from 1-MT-treated rats were more enhanced compared with those in the mock and the control groups. Moreover, the levels of cytokine and chemokine from mock, control group and 1-MT-treated rats after treated with CCl(4) were analyzed by ELISA, and the level of interleukin-6 was found to increase in 1-MT-treated rats. It was concluded that the deficiency of IDO exacerbated liver injury in CCl(4)-induced hepatitis and its effect may be connected with TNF-α and interleukin-6. 相似文献
9.
Joshua A. Hayden Erik R. Farquhar Lawrence Que John D. Lipscomb Michael P. Hendrich 《Journal of biological inorganic chemistry》2013,18(7):717-728
Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires FeII for catalysis, but MnII can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD–HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient MIII–O2 ·? species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the MIII–O2 ·? species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD–4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD–ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of FeII and MnII. Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover. Accordingly, past studies have shown that intermediate FeIII species are observed for these mutant enzymes. 相似文献
10.
Jeongrai Lee Tae Kyung Sung Jangho Moon Kyung Rak Min Chi-Kyung Kim Youngsoo Kim 《FEMS microbiology letters》1994,120(3):355-361
Abstract A 2,3-dihydroxybiphenyl-1,2-dioxygenase gene has been cloned from chromosomal DNA of Pseudomonas sp. DJ-12 which can grow on biphenyl or 4-chlorobiphenyl as the sole carbon and energy source. Enzymatic and immunochemical properties of the cloned 2,3-dihydroxybiphenyl-1,2-dioxygenase were characterized, and compared with those of P. pseudoalcaligenes KF707, Pseudomonas sp. KKS102, and P. putida OU83. The dioxygenase of Pseudomonas sp. DJ-12 was similar to those of P. pseudoalcaligenes KF707, and Pseudomonas sp. KKS102, but significantly different from that of P. putida OU83 in electrophoretic mobilities on native PAGE and SDS-PAGE. The dioxygenases of Pseudomonas sp. DJ-12 and P. putida OU83 exhibited the highest ring-fission activity to 3-methylcatechol, and those of P. pseudoalcaligenes KF707 and Pseudomonas sp. KKS102 to 2,3-dihydroxybiphenyl among 2,3-dihydroxybiphenyl, catechol, 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol as substrates. 2,3-dihydroxybiphenyl-1,2-dioxygenase of P. pseudoalcaligenes KF707 was immunochemically related to that of Pseudomonas sp. KKS102, but was different from those of Pseudomonas sp. DJ-12 and P. putida OU83. 相似文献
11.
H Chang J Lee S Roh S R Kim K R Min C K Kim E G Kim Y Kim 《Biochemical and biophysical research communications》1992,187(2):609-614
Catechol 2,3-dioxygenases were cloned from Alcaligenes sp. KF711, Pseudomonas putida KF715, and Achromobacter xylosoxidans KF701 which are biphenyl/polychlorinated biphenyls-degrading bacteria. All of the cloned enzymes were purified by preparative polyacrylamide gel electrophoresis (PAGE). The purified catechol 2,3-dioxygenases were significantly different from one another in ring-fission activities to catechol and its derivatives. The catechol 2,3-dioxygenase from Alcaligenes sp. KF711 exhibited higher ring-fission activity to 4-chlorocatechol than those from P. putida KF715 and A. xylosoxidans KF701. In electrophoretic mobilities, the three enzymes were different from one another on nondenaturing PAGE but the same on SDS-PAGE. 相似文献
12.
Substrate specificity and expression of three 2,3-dihydroxybiphenyl 1,2-dioxygenases from Rhodococcus globerulus strain P6 总被引:3,自引:0,他引:3
下载免费PDF全文

Rhodococcus globerulus strain P6 contains at least three genes, bphC1, bphC2, and bphC3, coding for 2,3-dihydroxybiphenyl 1,2-dioxygenases; the latter two specify enzymes of the family of one-domain extradiol dioxygenases. In order to assess the importance of these different isoenzymes for the broad catabolic activity of this organism towards the degradation of polychlorinated biphenyls (PCBs), the capacities of recombinant enzymes expressed in Escherichia coli to transform different chlorosubstituted dihydroxybiphenyls formed by the action of R. globerulus P6 biphenyl dioxygenase and biphenyl 2,3-dihydrodiol dehydrogenase were determined. Whereas both BphC2 and BphC3 showed similar activities for 2,3-dihydroxybiphenyl and all monochlorinated 2,3-dihydroxybiphenyls, BphC1 exhibited only weak activity for 2'-chloro-2,3-dihydroxybiphenyl. More highly chlorinated 2'-chlorosubstituted 2,3-dihydroxybiphenyls were also transformed at high rates by BphC2 and BphC3 but not BphC1. In R. globerulus P6, BphC2 was constitutively expressed, BphC1 expression was induced during growth on biphenyl, and BphC3 was not expressed at significant levels under the experimental conditions. Although we cannot rule out the expression of BphC3 under certain environmental conditions, it seems that the contrasting substrate specificities of BphC1 and BphC2 contribute significantly to the versatile PCB-degrading phenotype of R. globerulus P6. 相似文献
13.
K Uchida H Bandow R Makino K Sakaguchi T Iizuka Y Ishimura 《The Journal of biological chemistry》1985,260(3):1400-1406
Carbonmonoxy indoleamine 2,3-dioxygenase from rabbit small intestine exhibited two CO stretch bands at 1953 and 1933 cm-1 with half-band widths (delta v 1/2) of both approximately 15 cm-1. Upon addition of an excess amount of L-tryptophan, the substrate, the spectrum changed into that with an intense single band at 1902 cm-1 with the delta v 1/2 of 15 cm-1. Carbonmonoxy L-tryptophan 2,3-dioxygenase of Pseudomonas acidovorans in the absence of L-tryptophan showed a fused CO stretch band which consists of two components at 1965 and 1958 cm-1 (delta v 1/2 for the fused band; 25 cm-1), which was converted into a sharp single band at 1968 cm-1 (delta v 1/2; 10 cm-1) upon addition of excess L-tryptophan. On the other hand, CO complex of rat liver L-tryptophan 2,3-dioxygenase in the absence of L-tryptophan gave a spectrum with a poorly defined peak around 1961 cm-1. By the addition of L-tryptophan, the spectrum changed into that with two distinct bands at 1972 and 1920 cm-1 (delta v 1/2; 6 and 13 cm-1, respectively). These spectra were insensitive to pH in a range where the enzymes were not denatured (neutral to near pH 9). The infrared spectra of the carbonmonoxy enzymes were also affected by the addition of certain effectors such as skatole and alpha-methyl-DL-tryptophan, which facilitate the binding of L-tryptophan to the catalytic site of intestinal and Pseudomonas enzymes, respectively. However, the changes were of different types from those by the saturating amount of L-tryptophan. Possible mechanisms for these phenomena are discussed in relation to the structure of the heme-CO complex in these heme-containing dioxygenases. 相似文献
14.
Extradiol dioxygenases facilitate microbial aerobic degradation of catechol and its derivatives by activating molecular dioxygen and incorporating both oxygen atoms into their substrates. Experimental and theoretical studies have focused on the mechanism of the reaction at the active site. However, whether the catalytic rate is limited by O2 access to the active site has not yet been explored. Here, we choose a recently solved X-ray structure of homoprotocatechuate 2,3-dioxygenase as a typical example to determine potential pathways for O2 migration from the solvent into the enzyme center. On the basis of the trajectories of two 10-ns molecular dynamics simulations, implicit ligand sampling was used to calculate the 3D free energy map for O2 inside the protein. The energetically optimal routes for O2 diffusion were identified for each subunit of the homotetrameric protein structure. The O2 tunnels formed because of thermal fluctuations were also characterized by connecting elongated cavities inside the protein. By superimposing the favorable O2 tunnels on to the free energy map, both energetically and geometrically preferred O2 pathways were determined, as also were the amino acids that may be critical for O2 passage along these paths. Our results demonstrate that identical subunits possess quite distinct O2 tunnels. The order of O2 affinity of these tunnels is generally consistent with the order of the catalytic rate of each subunit. As a consequence, the probability of finding the reaction product is highest in the subunit containing the highest O2 affinity pathway. 相似文献
15.
Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C 总被引:6,自引:0,他引:6
A cloned gene encoding the Escherichia coli C homoprotocatechuate (HPC) dioxygenase, an aromatic ring cleavage enzyme, was used to produce large amounts of the protein. Preparations of E. coli C HPC dioxygenase, whether expressed from the cloned gene or produced by the bacterium, lost activity very rapidly. The pure protein showed one type of subunit of Mr 33,000. The first 21 N-terminal amino acids were sequenced and the data used to confirm that the open reading frame of 831 bp, identified from the nucleotide sequence, encoded HPC dioxygenase. Comparison of the derived amino acid sequence with those of other extradiol and intradiol dioxygenases showed no obvious similarity to any of them. 相似文献
16.
Paraquat and iron-dependent lipid peroxidation 总被引:3,自引:0,他引:3
The aim of this work was to study the effect of paraquat (P2+) on NADPH iron-dependent lipid peroxidation (basal peroxidation) either in the presence of NADPH or in the presence of NADPH-generating
systems.
When NADPH is present, P2+ potentiates NADPH iron-dependent lipid peroxidation, but use of NADPH-generating systems cancels this effect. This may be
attributed to certain components in NADPH-generating systems such as glucose-6-phosphate and sodium isocitrate, which act
as iron chelators. The binding of iron by these molecules facilitates its reduction and enhances its reactivity toward dioxygen
molecules, leading to the formation of reactive species capable of initiating lipid peroxidation, such as Fe3+-O
2
−
. Under these conditions of rapid basal peroxidation, any additional reduction of iron(III) by a reduced form of P2+ (P+.) has no apparent effect on the peroxidation itself, probably because the initial reaction between iron(II) and O2 followed by initiation of the peroxidation are both rate-limiting steps in the process.
Consequently, any alteration of the composition of the reacting mixture (e.g., buffers or the generating system) must be taken
into consideration because the formation of new iron chelates can change the rate of basal peroxidation and will modify the
effect of redoxcycling molecules. 相似文献
17.
Homoprotocatechuate 2,3-dioxygenase (WT 2,3-HPCD) isolated from Brevibacterium fuscum utilizes an active site Fe(II) and O(2) to catalyze proximal extradiol cleavage of the aromatic ring of the substrate (HPCA). Here, the conserved active site residue His200 is changed to Gln, Glu, Ala, Asn, and Phe, and the reactions of the mutant enzymes are probed using steady-state and transient kinetic techniques. Each mutant catalyzes ring cleavage of HPCA to yield the normal product. H200Q and H200N retain 30-40% of the WT 2,3-HPCD activity at 24 degrees C, but the other mutants reduce the k(cat) to less than 9% of normal. The origin of the reduced activity is unlikely to be the substrate binding phase of the catalytic cycle, because the multistep anaerobic binding reaction of the chromophoric substrate 4-nitrocatechol (4NC) is shown to proceed with rate constants similar to those observed for WT 2,3-HPCD. In contrast, the rate constants of several steps in the multistep O(2) binding/insertion and product release half of the reaction cycle are substantially slowed, in particular the steps in which activated oxygen attacks the organic substrate and in which product is released. In the case of the H200N mutant, the product of 4NC oxidation is not the usual ring cleavage product, but rather the 4NC quinone. These results suggest that the main role of His200 is in facilitating the steps in the second half of the reaction cycle. The decreased rate constants for the O(2) insertion steps in the catalytic cycles of the mutant enzymes allow the oxygen adduct of an extradiol dioxygenase to be detected for the first time. 相似文献
18.
Meininger D Zalameda L Liu Y Stepan LP Borges L McCarter JD Sutherland CL 《Biochimica et biophysica acta》2011,1814(12):1947-1954
Indoleamine 2,3-dioxygenase (IDO1) catalyzes the first step in tryptophan breakdown along the kynurenine pathway. Therapeutic inhibition of IDO1 is receiving much attention due to its proposed role in the pathogenesis of several diseases including cancer, hypotension and neurodegenerative disorders. A related enzyme, IDO2 has recently been described. We report the first purification and kinetic characterization of human IDO2 using a facile l-tryptophan consumption assay amenable to high throughput screening. We found that the K(m) of human IDO2 for l-tryptophan is much higher than that of IDO1. We also describe the identification and characterization of a new IDO1 inhibitor compound, Amg-1, by high throughput screening, and compare the inhibition profiles of IDO1 and IDO2 with Amg-1 and previously described compounds. Our data indicate that human IDO1 and IDO2 have different kinetic parameters and different inhibition profiles. Docking of Amg-1 and related analogs to the known structure of IDO1 and to homology-modeled IDO2 suggests possible rationales for the different inhibition profiles of IDO1 and IDO2. 相似文献
19.
Erlandsen H Kim JY Patch MG Han A Volner A Abu-Omar MM Stevens RC 《Journal of molecular biology》2002,320(3):645-661
Structure determination of bacterial homologues of human disease-related proteins provides an efficient path to understanding the three-dimensional fold of proteins that are associated with human diseases. However, the precise locations of active-site residues are often quite different between bacterial and human versions of an enzyme, creating significant differences in the biological understanding of enzyme homologs. To study this hypothesis, phenylalanine hydroxylase from a bacterial source has been structurally characterized at high resolution and comparison is made to the human analog. The enzyme phenylalanine hydroxylase (PheOH) catalyzes the hydroxylation of l-phenylalanine into l-tyrosine utilizing the cofactors (6R)-l-erythro-5,6,7,8 tetrahydrobiopterin (BH(4)) and molecular oxygen. Previously determined X-ray structures of human and rat PheOH, with a sequence identity of more than 93%, show that these two structures are practically identical. It is thus of interest to compare the structure of the divergent Chromobacterium violaceum phenylalanine hydroxylase (CvPheOH) ( approximately 24% sequence identity overall) to the related human and rat PheOH structures. We have determined crystal structures of CvPheOH to high resolution in the apo-form (no Fe-added), Fe(III)-bound form, and 7,8-dihydro-l-biopterin (7,8-BH(2)) plus Fe(III)-bound form. The bacterial enzyme displays higher activity and thermal melting temperature, and structurally, differences are observed in the N and C termini, and in a loop close to the active-site iron atom. 相似文献
20.
J M Braughler R L Chase J F Pregenzer 《Biochemical and biophysical research communications》1988,153(3):933-938
Peroxidation of rat brain synaptosomes was assessed by the formation of thiobarbituric acid reactive products in either 50 mM potassium phosphate buffer (pH 7.4) or pH adjusted saline. In phosphate, addition of Fe2+ resulted in a dose-related increase in lipid peroxidation. In saline, stimulation of lipid peroxidation by Fe2+ was maximal at 30 uM, and was less at concentrations of 100 uM and above. Whereas desferrioxamine caused a dose-related inhibition of iron-dependent lipid peroxidation in phosphate, it stimulated lipid peroxidation with Fe2+ by as much as 7-fold in saline. The effects of desferrioxamine depended upon the oxidation state of iron, and the concentration of desferrioxamine and lipid. The results suggest that lipid and desferrioxamine compete for available iron. The data are consistent with the hypothesis that either phosphate or desferrioxamine may stimulate iron-dependent lipid peroxidation under certain circumstances by favoring formation of Fe2+/Fe3+ ratios. 相似文献