首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norharman, abundantly present in cigarette smoke and cooked foods, is not mutagenic to Salmonella typhimurium strains. However, norharman shows mutagenicity to S. typhimurium TA98 and YG1024 in the presence of S9 mix when coexisting with aromatic amines, including aniline, o- and m-toluidines. We previously reported that the mutagenicity from norharman and aniline in the presence of S9 mix was due to the formation of a mutagenic compound, 9-(4'-aminophenyl)-9H-pyrido[3,4-b]indole (aminophenylnorharman). In the present study, we analyzed the mutagens produced by norharman with o- or m-toluidine in the presence of S9 mix. When norharman and o-toluidine were reacted at 37 degrees C for 20 min, two mutagenic compounds, which were mutagenic with and without S9 mix, respectively, were produced, and these were isolated by HPLC. The former mutagen was deduced to be 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-3'-methylphenylnorharman) on the basis of various spectral data, and this new heterocyclic amine was confirmed by its chemical synthesis. The latter mutagen was identified to be the hydroxyamino derivative. Amino-3'-methylphenylnorharman induced 41,000 revertants of TA98, and 698,000 revertants of YG1024 per microg with S9 mix. Formation of the same DNA adducts was observed in YG1024 when amino-3'-methylphenylnorharman or a mixture of norharman plus o-toluidine was incubated with S9 mix. These observations suggest that norharman reacts with o-toluidine in the presence of S9 mix to produce amino-3'-methylphenylnorharman, and this compound is metabolically activated to yield its hydroxyamino derivative. After activation by O-acetyltransferase, it might bind to DNA and exert mutagenicity in S. typhimurium TA98 and YG1024. When norharman and m-toluidine were reacted in the presence of S9 mix, 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-2'-methylphenylnorharman) was identified as a mutagen. Thus, the mutagenicity of norharman with m-toluidine may follow a mechanism similar to that with o-toluidine.  相似文献   

2.
Interactions of norharman and harman with DNA.   总被引:4,自引:1,他引:3       下载免费PDF全文
The interactions of norharman (9H-pyrido [3,4-b] indole) and harman (1-methyl-9H-pyrido [3,4-b] indole) with DNA were studied. DNA caused remarkable fluorescence quenching and change in the absorption spectra of the dyes. Scatchard plots obtained by optical titration gave Kd values of 2.2 X 10(-5)M and 7.7 X 10(-6)M, and apparent numbers of binding sites of 0.13/base and 0.12/base for norharman and harman, respectively. Agarose gel electrophoresis of circular DNA, closed in the presence or absence of norharman revealed that the dye intercalates DNA, thereby causing 17 +/- 3 degrees unwinding of the double helix.  相似文献   

3.
Norharman (9H-pyrido[3,4-b]indole), which is a heterocyclic amine included in cigarette smoke or cooked foodstuffs, is not mutagenic itself. However, norharman reacts with non-mutagenic aniline to form mutagenic aminophenylnorharman (APNH), of which DNA adducts formation and hepatocarcinogenic potential are pointed out. We investigated whether N-OH-APNH, an N-hydroxy metabolite of APNH, can cause oxidative DNA damage or not, using 32P-labeled DNA fragments. N-OH-APNH caused Cu(II)-mediated DNA damage. When an endogenous reductant, beta-nicotinamide adenine dinucleotide (NADH) was added, the DNA damage was greatly enhanced. Catalase and a Cu(I)-specific chelator inhibited DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). Typical -*OH scavenger did not inhibit DNA damage. These results suggest that the main reactive species are probably copper-hydroperoxo complexes with DNA. We also measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation by N-OH-APNH in the presence of Cu(II), using an electrochemical detector coupled to a high-pressure liquid chromatograph. Addition of NADH greatly enhanced 8-oxodG formation. UV-VIS spectra and mass spectra suggested that N-OH-APNH was autoxidized to nitrosophenylnorharman (NO-PNH). We speculated that NO-PNH was reduced by NADH. Cu(II) facilitated the redox cycle. In the presence of NADH and Cu(II), very low concentrations of N-OH-APNH could induce DNA damage via redox reactions. We conclude that oxidative DNA damage, in addition to DNA adduct formation, may play an important role in the expression of genotoxicity of APNH.  相似文献   

4.
Aminophenylnorharman (APNH) is a newly identified mutagenic heterocyclic amine formed by coupling of norharman with aniline in the presence of S9 mix. Furthermore, mutagenic amino-3'-methylphenylnorharman (AMPNH) and aminophenylharman (APH) have been identified from a reaction mixture of norharman and o-toluidine and that of harman and aniline, respectively, with S9 mix. Among these three heterocyclic amines, APNH shows most potent mutagenic activity towards Salmonella typhimurium TA98 and YG1024 with S9 mix. In the present study, the induction of sister chromatid exchanges (SCEs) by APNH was examined in Chinese hamster lung (CHL) cells in vitro, comparing it to those of AMPNH and APH. On incubation with rat S9 for 6h, followed by a recovery culture period of 18h, a dose-dependent effect was found at concentrations between 0.00125 and 0.01 microg/ml for APNH and between 0.3125 and 5 microg/ml for AMPNH and APH. The approximate chemical concentrations leading to a three-fold of control SCE levels calculated from slopes of the linear regressions of induced SCEs were 0.005 for APNH, 0.51 for AMPNH and 1.7 microg/ml for APH. Because of the very strong SCE-causing ability of APNH, we further explored its genotoxicity by examining the induction of chromosome aberrations in CHL cells. A dose-dependent effect was found for chromosome aberrations at concentrations between 0.00125 and 0.04 microg/ml of APNH. The aberrations observed were primarily chromatid exchanges (cte) and breaks (ctb). In conclusion, the potency of SCE induction and clastogenic activity induced by APNH is stronger than Actinomycin D, Mitomycin C (MMC) or 1,8-dinitropyrene which are considered to be the potent clastogens in the literature. Further studies are needed for elucidating mechanisms of the genotoxic actions of these compounds and for evaluating their potential hazards to human health.  相似文献   

5.
Norharman (9H-pyrido-[3,4-b]indol) represents a member of the mammalian alkaloids with the group name beta-carbolines. In mammals, it exhibits psychotropic and co-mutagenic actions. Highly specific [(3)H]norharman binding sites have been detected in the liver of rats (B(max): 11 pmol mg(-1) protein; K(D): lower nanomolar range). Two [(3)H]norharman binding proteins with apparent molecular masses of 60 and 80 kDa (SDS-PAGE) were isolated from rat liver crude membrane fraction and identified as the enzyme carboxylesterase (EC 3.1.1.1; 60 kDa) and the stress protein glucose-regulated protein 78 (GRP78; 78 kDa). Possible functional consequences of the interaction of norharman with these two proteins are discussed.  相似文献   

6.
Purified human red blood cell cytosol was used to activate the heterocyclic amines 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) into mutagenic intermediate(s) in the Salmonella test. The liquid preincubation method in the presence of strain TA98 was utilized. In order to understand the mechanism involved in this metabolic activation, some modulators were incorporated in the medium. The results suggest that an oxygenated hemoprotein, probably oxyhemoglobin, is involved in the activation into genotoxic intermediate(s).  相似文献   

7.
A series of 2-substituted 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indoles was synthesized as potential antagonists for the NR1A/2B subtype of N-methyl-D-aspartate (NMDA) receptors. Assayed by electrical recording under steady-state conditions, 7-hydroxy-2-(4-phenylbutyl)- 1,2,3,4-tetrahydropyrido-[3,4-b]indole (30) was the most potent compound in the series having an IC50 value of 50 nM at the NR1A/2B receptors.  相似文献   

8.
The chemical investigations of Dicorynia guianensis heartwood led to the isolation of four new indole alkaloids for the first time in this plant. Compound (1) identified as spiroindolone 2′,3′,4′,9′-tetrahydrospiro [indoline-3,1′pyrido[3,4-b]-indol]-2-one, and compound (3) described as nitrone 1-methyl-4,9-dihydro-3H-pyrido [3,4-b] indole 2-oxide and were isolated for the first time as natural products. ABTS antioxidant activity guided their isolation.  相似文献   

9.
Substituted 9H-pyrido[3,4-b]indoles (beta-carbolines) identified in our laboratory as potential pharmacophore for designing macrofilaricidal agents, have been explored further for identifying the pharmacophore responsible for high order of adulticidal activity. This has led to syntheses and macrofilaricidal evaluations of a number of 1-aryl-9H-pyrido[3,4-b]indole-3-carboxylate derivatives (3-7). The macrofilarical activity was initially evaluated in vivo against Acanthoeilonema viteae. Amongst all the synthesized compounds, only twelve compounds namely 3a, 3c, 3d, 3f, 4c, 4d, 4f, 5a, 6f, 6h, 6i and 7h have exhibited either > 90% micro- or macrofilaricidal activity or sterilization of female worms. These compounds have also been screened against Litomosoides carinii and of these only 3f and 5a have also been found to be active. Finally these two compounds have been evaluated against Brugia malayi. The structure activity relationship (SAR) associated with position-1 and 3 substituents in beta-carbolines have been discussed. It has been observed that the presence of carbomethoxy at position-3 and an aryl substituent at position- in beta-carbolines effectively enhance antifilarial activity particularly against A. viteae. Amongst the various compounds screened, methyl 1-(4-methylphenyl)-9H-pyrido[3,4-b]indole-3-carboxylate (4c) has shown highest adulticidal activity and methyl 1-(4-chlorophenyl)-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole-3-carboxyla te (3a) has shown highest microfilaricidal action against A. viteae at 50 mg/ kg x 5 days (i.p.). Another derivative of this compound namely 1-(4-chlorophenyl)-3-hydroxymethyl-9H-pyrido[3,4-b]indole (5a) exhibited highest activity against L. carinii at 30 mg/kg x 5 days (i.p.) and against B. malayi at 50 mg/kg x 5 days (i.p.) or at 200 mg/kg x 5 days (p.o.).  相似文献   

10.
The interactions between lipids and the mutagenic active metabolite of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-hydroxy-Trp-P-2), were studied. Oleic acid showed an inhibitory effect on the formation of this active metabolite mainly by inhibition of hepatic microsomal oxidation systems. On the other hand, microsomal lipids from rat liver and commercial pig liver lecithin diminished the amount of N-hydroxy-Trp-P-2 without inhibiting the metabolism of Trp-P-2. The direct reaction of these lipids with N-hydroxy-Trp-P-2 was disclosed by experiments using N-hydroxy-Trp-P-2 and lipids without microsomes. Furthermore, the participation of lipid peroxides in this reaction was suggested by a linear relationship between the concentrations of the conjugated diene of lipids and the disappearance of N-hydroxy-Trp-P-2. When [3H]N-hydroxy-Trp-P-2 was incubated in the presence of pig liver lecithin, the polar products which were not formed in the incubation without lipids were newly detected by thin-layer chromatography (TLC) analysis.  相似文献   

11.
Harman and norharman, known as comutagens of many chemicals, were tested for their effect on the binding to DNA of 3-amino-1-methyl-5H-pyrido(4,3-b)indole, (Trp-P-2), a potent mutagen found with harman and norharman in the pyrolysate of tryptophan (1). We demonstrated that the alteration of the DNA helix by intercalation of these comutagens to DNA does not affect the affinity of this potent mutagen for DNA. Covalent binding, however, was inhibited by the comutagens.  相似文献   

12.
Three mutagenic heterocyclic amines, 2-amino-3-methylimidazo-[4, 5-f]quinoline (IQ), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AalphaC), were isolated and identified in water from the Danube River in Vienna. Heterocyclic amines were extracted from river water by the blue rayon hanging method, and analyzed by gas chromatography with a nitrogen-phosphorous detector (GC-NPD) and GC-mass spectrometry (GC-MS) after conversion into their N-dimethylaminomethylene derivatives. Identity of IQ, Trp-P-1 and AalphaC in the river water was confirmed by GC-MS. The contents of IQ, Trp-P-1 and AalphaC were estimated by GC-NPD at 1.78+/-0.17, 0.14+/-0.02 and 0.44+/-0.02 ng/g blue rayon equivalent (n=3), respectively. The total amounts of these amines accounted for 26% of the mutagenicity of blue rayon extracts evaluated by the Ames test using TA98 with metabolic activation.  相似文献   

13.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

14.
3-Aminoharman (3AH, 3-amino-1-methyl-9H-pyrido[3,4-b]indole), which has been reported as a novel substance with an antagonistic effect on induction of sister-chromatid exchange (SCE) by polycyclic mutagens in the presence of the metabolic activation system, was examined with a cultured human lymphoblastoid cell line, NL3, for its effect on SCE induction by direct-acting mutagens such as mitomycin C (MMC), nitrogen mustard N-oxide (NMO), methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline 1-oxide (4NQO) and 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (OH-Trp-P-2), and also by ultraviolet light (UV) irradiation. The results obtained on simultaneous treatment with 3AH and mutagens were as follows: (1) 3AH suppressed more than 50% of SCEs induced by MMC, NMO and OH-Trp-P-2; (2) 4NQO- and MNNG-induced SCEs were also suppressed by 3AH but to a lesser degree; (3) MMS-induced SCEs were not, however, altered by 3AH; and (4) the suppression of SCE by 3AH was dose-dependent. Treatment of cells with 3AH for 2 h immediately before MMC exposure suppressed SCE induction to a significant degree similar to the simultaneous treatment, but post-treatment with 3AH was much less effective. 3AH inhibited SCE induction by NMO when 3AH treatment was carried out either before or after NMO treatment, to an extent similar to the simultaneous treatment. Treatments with 3AH either before or after UV exposure did not change the UV-induced SCEs. Results with these direct-acting mutagens ruled out the relevance of metabolic activation as a necessary step for the antagonizing effect of 3AH.  相似文献   

15.
Mutagenicities of indole and 30 derivatives after nitrite treatment   总被引:4,自引:0,他引:4  
Indole and 7-derivatives, L- and D-tryptophan and 9 derivatives, and beta-carboline (norharman) and 11 derivatives were tested for mutagenicity to Salmonella typhimurium TA100 and TA98 after nitrite treatment. 1-Methylindole, which is present in cigarette smoke condensate (Grob and Voellmin, 1970; Hoffmann and Rathkamp, 1970), was the most mutagenic to TA100 without S9 mix after nitrite treatment, inducing 615,000 revertants/mg. 2-Methylindole, 1-methyl-DL-tryptophan, harmaline and (-)-(1S,3S)-1,2-dimethyl-1,2,3,4-tetrahydro-beta-carboline-3- carboxylic acid also showed strong mutagenicity after nitrite treatment, inducing 129,000, 184,000, 103,000 and 197,000 revertants/mg, respectively. These mutagenic potencies were comparable with those of benzo[alpha]pyrene, 3-methylcholanthrene and 2-amino-9H-pyrido[2,3-b]indole (A alpha C) (Sugimura, 1982). Of 31 compounds tested, 22 were mutagenic after nitrite treatment. Since various indole compounds are ubiquitous in our environment, especially in plants, the presence of their mutagenicities after nitrite treatment warrants further studies, including those on their in vivo carcinogenicities.  相似文献   

16.
A group of nitrogen heterocyclic aromatic compounds used, among others, as UV-MALDI matrices was studied. By using spectroscopic, luminescence and photoacoustic techniques, as well as time resolved phosphorescence for singlet oxygen production determination, the behaviour of 9-aminoacridine (9AA), 3-aminoquinoline (3AQ), 2-(2-aminoethylamino)-5-nitropyridine (AAN) and 3,4-dihydro-7-methoxy-1-methyl-9H-pyrido[3,4-b] indole (harmaline, HLA) in acetonitrile solutions is described. The results show that for these compounds radiationless processes that release prompt heat to the media are a quite important deactivation mechanism.  相似文献   

17.
The mutagenicities of aniline, o-toluidine and yellow OB were demonstrated only in the presence of the β-carboline compound, norharman. The effect of norharman increased linearly with increase in the amount of S-9. The mutagenicity of 4-dimethylaminoazobenzene was greatly enhanced by the presence of norharman, and again dose-dependency on the amount of S-9 was observed. In the presence of a large amount of S-9, norharman caused several fold enhancement of the mutagenicities of N-2-fluorenylacetamide, benzo(a)-pyrene, and 1,4-dimethyl-3-amino-5H-pyrido(4,3b) indole, isolated from a tryptophan pyrolysate. However, norharman suppressed the mutagenicities of these compounds in the presence of a small amount of S-9. The mutagenicity of kaempferol, a flavonoid, was inhibited by norharman with either a large or small amount of S-9.  相似文献   

18.
Curcumin (C) and its natural analogues demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC), known for their potent anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic effects, were tested for their possible inhibitory effects against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor induced rat liver S9 homogenate. In the present investigations, curcumin as well as its two natural analogues i.e., dmC and bdmC were found to be highly effective in suppressing genotoxicity of all the tested cooked food mutagens in a dose-dependent manner, in both the frame shift (TA98) as well as base pair mutation sensitive (TA100) strains of S. typhimurium. However, bdmC appeared to be a relatively less active antimutagen compared to C and dmC. More than 80% inhibition of mutagenicity was observed at 200 microg/plate in case of C and dmC in both TA98 and TA100 against all tested cooked food mutagens. Where as, bdmC showed 39-79% inhibition in TA100 and 60-80% inhibition in TA98, at a dose of 200 microg/plate. These findings warrant further biochemical, enzymatic and in vivo investigations in animal models as well as in humans to establish the chemoprotective effect of these agents against mutagenic heterocyclic amines found in cooked food.  相似文献   

19.
2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine (HAA) that arises in tobacco smoke. UDP-glucuronosyltransferases (UGTs) are important enzymes that detoxicate many procarcinogens, including HAAs. UGTs compete with P450 enzymes, which bioactivate HAAs by N-hydroxylation of the exocyclic amine group; the resultant N-hydroxy-HAA metabolites form covalent adducts with DNA. We have characterized the UGT-catalyzed metabolic products of AαC and the genotoxic metabolite 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC) formed with human liver microsomes, recombinant human UGT isoforms, and human hepatocytes. The structures of the metabolites were elucidated by (1)H NMR and mass spectrometry. AαC and HONH-AαC underwent glucuronidation by UGTs to form, respectively, N(2)-(β-D-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N(2)-Gl) and N(2)-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HON(2)-Gl). HONH-AαC also underwent glucuronidation to form a novel O-linked glucuronide conjugate, O-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN(2)-O-Gl). AαC-HN(2)-O-Gl is a biologically reactive metabolite and binds to calf thymus DNA (pH 5.0 or 7.0) to form the N-(deoxyguanosin-8-yl)-AαC adduct at 20-50-fold higher levels than the adduct levels formed with HONH-AαC. Major UGT isoforms were examined for their capacity to metabolize AαC and HONH-AαC. UGT1A4 was the most catalytically efficient enzyme (V(max)/K(m)) at forming AαC-N(2)-Gl (0.67 μl·min(-1)·mg of protein(-1)), and UGT1A9 was most catalytically efficient at forming AαC-HN-O-Gl (77.1 μl·min(-1)·mg of protein(-1)), whereas UGT1A1 was most efficient at forming AαC-HON(2)-Gl (5.0 μl·min(-1)·mg of protein(-1)). Human hepatocytes produced AαC-N(2)-Gl and AαC-HN(2)-O-Gl in abundant quantities, but AαC-HON(2)-Gl was a minor product. Thus, UGTs, usually important enzymes in the detoxication of many procarcinogens, serve as a mechanism of bioactivation of HONH-AαC.  相似文献   

20.
The isolation of norharmalane (3,4-dihydro-9H-pyrido(3,4-b)indole) from culture media of the cyanobacterium Nodularia harveyana is described. The minimum toxic quantities against selected cyanobacteria of this compound, of the two known cyanobacterial exometabolites 4,4′-dihydroxybiphenyl and norharmane (9H-pyrido(3,4-b)indole) and in addition of harmane (1-methyl-9H-pyrido(3,4-b)indole) were determined using a special TLC plate assay. The three β-carbolines harmane, norharmane and norharmalane were tested both as bases and as hydrochlorides. All four test compounds were found to be cytotoxic against the cyanobacterial test organisms in low quantities (0.5 to 18.0 μg). For the β-carbolines the following structure-response relationships were revealed: the double bond in position 3–4 and possibly the 1-methyl-group increased the cytotoxic effect of these indole alkaloids. Minimum toxic quantities detected for β-carboline bases were in general lower than those of equimolar amounts of the corresponding hydrochlorides. The possible applicability of both β-carbolines and biphenyls as agents in antifouling systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号