首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effects of an increase in base-line tone on pulmonary vascular responses to acetylcholine were investigated in the pulmonary vascular bed of the intact-chest cat. Under conditions of controlled blood flow and constant left atrial pressure, intralobar injections of acetylcholine under low-tone base-line conditions increased lobar arterial pressure in a dose-related manner. When tone was increased moderately by alveolar hypoxia, acetylcholine elicited dose-dependent decreases in lobar arterial pressure, and at the highest dose studied, acetylcholine produced a biphasic response. When tone was raised to a high steady level with the prostaglandin analogue, U46619, acetylcholine elicited marked dose-related decreases in lobar arterial pressure. Atropine blocked both vasoconstrictor responses at low tone and vasodilator responses at high tone, whereas meclofenamate and BW 755C had no effect on responses to acetylcholine at low or high tone. The vasoconstrictor response at low tone was blocked by pirenzepine (20 and 50 micrograms/kg iv) but not gallamine (10 mg/kg iv). The vasodilator response at high tone was not blocked by pirenzepine (50 micrograms/kg iv) or gallamine or pancuronium (10 mg/kg iv). The present data support the concept that pulmonary vascular responses to acetylcholine are tone dependent and suggest that the vasoconstrictor response under low-tone conditions is mediated by a high-affinity muscarinic (M1)-type receptor. These data also suggest that vasodilator responses under high-tone conditions are mediated by muscarinic receptors that are neither M1 nor M2 low-affinity muscarinic-type receptor and that responses to acetylcholine are not dependent on the release of cyclooxygenase or lipoxygenase products.  相似文献   

2.
The effects of OKY-1581, a thromboxane synthesis inhibitor, on pulmonary vascular responses to arachidonic acid (AA) were investigated under baseline and elevated tone conditions in the intact chest cat. Under conditions of controlled blood flow at baseline tone, intralobar injections of AA increased lobar arterial pressure in a dose-related manner. These pressor responses were reduced by OKY-1581, and a small vasodilator response was unmasked. The administration of indomethacin to these same animals abolished all responses to AA. When baseline tone in the pulmonary vascular bed was elevated by infusion of U46619, intralobar injections of AA caused a biphasic change in lobar arterial pressure characterized by an initial increase followed by a secondary fall in pressure. Treatment with OKY-1581 attenuated the pressor component of the response and enhanced the depressor component of the response. All responses to AA at elevated tone were also blocked by indomethacin. Pressor responses to intralobar injections of U46619 were not altered by OKY-1581 or indomethacin and were similar under baseline and high pulmonary vascular tone conditions. The results of this study suggest that the pulmonary pressor response to AA in the cat is dependent in large part on the formation of TXA2 and also suggest that TXA2, PGI2, and vasoconstrictor prostaglandins (PGF2 alpha, PGD2, PGE2) are formed from AA in the cat lung.  相似文献   

3.
Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat   总被引:1,自引:0,他引:1  
We investigated the effects of vasoactive intestinal peptide (VIP) in the feline pulmonary vascular bed under conditions of controlled pulmonary blood flow when pulmonary vascular tone was at base-line levels and when vascular resistance was elevated. Under base-line conditions, VIP caused small but significant reductions in lobar arterial pressure without affecting left atrial pressure. Decreases in lobar arterial pressure in response to VIP were greater and were dose related when lobar vascular resistance was increased by intralobar infusion of U 46619, a stable prostaglandin endoperoxide analogue. Acetylcholine and isoproterenol also caused significant decreases in lobar arterial pressure under base-line conditions, and responses to these agents were enhanced when lobar vascular tone was elevated. Moreover, when doses of these agents are expressed in nanomoles, acetylcholine and isoproterenol were more potent than VIP in decreasing lobar arterial pressure. Responses to VIP were longer in duration with a slower onset than were responses to acetylcholine or isoproterenol. Pulmonary vasodilator responses to VIP were unchanged by indomethacin, atropine, or propranolol. The present data demonstrate that VIP has vasodilator activity in the pulmonary vascular bed and that responses are dependent on the existing level of vasoconstrictor tone. These studies indicate that this peptide is less potent than acetylcholine or isoproterenol in dilating the feline pulmonary vascular bed and that responses to VIP are not dependent on a muscarinic or beta-adrenergic mechanism or release of a dilator prostaglandin.  相似文献   

4.
Methylene blue selectively inhibits pulmonary vasodilator responses in cats   总被引:5,自引:0,他引:5  
The effects of methylene blue on vascular tone and the responses to pressor and depressor substances were investigated in the constricted feline pulmonary vascular bed under conditions of controlled blood flow and constant left atrial pressure. When tone was elevated with U46619, intralobar injections of acetylcholine, bradykinin, nitroglycerin, isoproterenol, epinephrine, and 8-bromoguanosine-3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intralobar infusions of methylene blue elevated lobar arterial pressure without altering base-line left atrial or aortic pressure, heart rate, or cardiac output. When methylene blue was infused in concentrations that raised lobar arterial pressure to values similar to those attained during U46619 infusion, the pulmonary vasodilator responses to acetylcholine, bradykinin, and nitroglycerin were reduced significantly, whereas vasodilator responses to isoproterenol, epinephrine, and 8-bromo-cGMP were not altered. Moreover, the pressor responses to angiotensin II and BAY K 8644 during U46619 infusion and during methylene blue infusion were similar. The enhancing effects of methylene blue on vascular tone and inhibiting effects of this agent on responses to acetylcholine, bradykinin, and nitroglycerin were reversible. These responses returned to control value when tone was again increased with U46619, 30-45 min after the methylene blue infusion was terminated. The present data are consistent with the hypothesis that cGMP may play a role in the regulation of tone in the feline pulmonary vascular bed and in the mediation of vasodilator responses to the endothelium-dependent vasodilators, acetylcholine and bradykinin, and to nitrogen oxide-containing vasodilators such as nitroglycerin.  相似文献   

5.
The vascular response to the muscarinic receptor agonist acetylcholine (ACh) in the presence of selected antagonists was examined in the isolated blood-perfused canine left lower lung lobe under conditions of normal (resting) and elevated vascular tone. At normal vascular tone, ACh (1-5 mumol) produced a dose-dependent increase in pulmonary arterial pressure (Ppa), total pulmonary vascular resistance (PVR), and downstream resistance (Rds) without altering upstream resistance (Rus). Pirenzepine (50 and 100 nM), the prototype M1-selective antagonist, and gallamine, an M2-selective antagonist, as well as atropine (50 nM) and secoverine (100 nM), nonselective antagonists, attenuated (P less than 0.05) the ACh-induced increase in Ppa and Rds. With elevated vascular tone induced by serotonin infusion, ACh produced a dose-dependent increase in Ppa in 19 of 25 lobes, although Rus decreased while Rds increased in all lobes. At high vascular tone, pirenzepine or gallamine attenuated the ACh-induced increase in Rds, whereas Rus was not affected. Secoverine and atropine antagonized ACh-induced increases in both Rds and Rus. The pA2 values (i.e., the negative log antagonist concentration requiring a doubling of ACh dose for an equivalent increase in Rds) for gallamine, pirenzepine, secoverine, and atropine were 6.1 +/- 0.1, 7.4 +/- 0.1, 8.3 +/- 0.2, and 10.2 +/- 0.3, respectively. These results suggest that 1) ACh increases PVR in the dog by constricting the venous segments (downstream) of the pulmonary circulation via activation of pulmonary vascular muscarinic receptors under conditions of both normal and elevated vascular tone, 2) both M1- and non-M1-muscarinic receptor subtypes appear to participate in mediating the ACh-induced increase in Rds, and 3) ACh moderately relaxes the upstream (arterial) vessels, especially under conditions of elevated tone.  相似文献   

6.
Contractions of an echinoderm (sp. Sclerodactyla briareus) smooth muscle, the longitudinal muscle of the body wall (LMBW), were evoked by acetylcholine (ACh) and agonists: epibatidine, muscarine and nicotine (in order of force generation: ACh>muscarine=epibatidine>nicotine). ACh-induced contractions were blocked by atropine by 50%, and methoctramine, by 30%. ACh responses were also blocked by 25% by methyllycaconitine (MLA) but not by d-tubocurarine (dTC). Muscarine initiated large contractions that were completely blocked by atropine. To elucidate possible muscarinic ACh receptor (mAChR) subtypes, muscarinic agonists (oxotremorine, pilocarpine) and antagonists (methoctramine, pirenzepine) were tested. Oxotremorine, pilocarpine, and pirenzepine each enhanced resting tonus and potentiated ACh-induced contractions (order of potency: pilocarpine>oxotremorine=pirenzepine). Muscarine, oxotremorine or pirenzepine generated phasic, rhythmic contractions. Nicotine-induced contractions were almost completely blocked by dTC but were not altered by atropine. Large contractions evoked by epibatidine were potentiated by dTC whereas atropine had no effect on them. MLA blocked spontaneous rhythmicity. Cholinesterase inhibitors, neostigmine or physostigmine, caused marked potentiation of ACh-induced contractions and initiated rhythmic slow wave contractions in previously quiescent muscles. The present pharmacological evidence points to the co-existence of excitatory nicotinic ACh receptor (nAChRs) and mAChRs where nAChRs possibly modulate tone, and the mAChRs initiate and enhance rhythmicity.  相似文献   

7.
The present study was undertaken to investigate the effects of endothelin (ET) isopeptides on the pulmonary vascular bed of the intact spontaneously breathing cat under conditions of constant pulmonary blood flow and left atrial pressure. When pulmonary vasomotor tone was actively increased by intralobar infusion of U-46619, intralobar bolus injections of ET-1 (1 microgram), ET-2 (1 microgram), and ET-3 (3 micrograms) produced marked reductions in pulmonary and systemic vascular resistances. The pulmonary vasodilator response to each ET isopeptide was not altered by atropine (1 mg/kg iv), indomethacin (2.5 mg/kg iv), and ICI 118551 (1 mg/kg iv) but was significantly diminished by glybenclamide (5 mg/kg iv). This dose of glybenclamide significantly diminished the decrease in lobar arterial and systemic arterial pressures in response to intralobar injection of pinacidil (30 and 100 micrograms) and cromakalim (10 and 30 micrograms), whereas pulmonary vasodilator responses to acetylcholine (0.03 and 0.1 microgram), prostaglandin I2 (0.1 and 0.3 microgram), and isoproterenol (0.03 and 0.1 microgram) were not altered. The systemic vasodilator response to each ET isopeptide was not changed by glybenclamide or by the other blocking agents studied. The present data comprise the first publication demonstrating that ET-1, ET-2, and ET-3 dilate the pulmonary vascular bed in vivo. The present data further suggest that the pulmonary vasodilator response to ET isopeptides depends, in part, on activation of potassium channels and is mediated differently from the systemic vasodilator response to these substances. Contrary to earlier work, the present data indicate the pulmonary vascular response to ET isopeptides does depend on the preexisting level of pulmonary vasomotor tone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of N omega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of endothelium-derived relaxing factor (EDRF) production, on vascular tone and responses were investigated in the pulmonary vascular bed of the intact-chest cat under conditions of controlled blood flow and constant left atrial pressure. When pulmonary vascular tone was elevated with U-46619, intralobar injections of acetylcholine, bradykinin, sodium nitroprusside, isoproterenol, prostaglandin E1 (PGE1), lemakalim, and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intravenous administration of L-NAME elevated lobar arterial and systemic arterial pressures without altering left atrial pressure. When U-46619 was infused after L-NAME to raise lobar arterial pressure to levels similar to those attained during the control period, vasodilator responses to acetylcholine and bradykinin were reduced significantly, whereas responses to PGE1, lemakalim, and 8-bromo-cGMP were not altered, and responses to nitroprusside were increased. There was a small effect on the response to the highest dose of isoproterenol, and pressor responses to BAY K 8644 and angiotensin II were not altered. These results are consistent with the hypothesis that EDRF production may involve the formation of nitric oxide or a nitroso compound from L-arginine and that EDRF production may have a role in the regulation of tone and in the mediation of responses to acetylcholine and bradykinin in the pulmonary vascular bed of the cat.  相似文献   

9.
The antimuscarinic properties of pirenzepine and N-methylatropine were evaluated in two intact preparations by measuring A) the inhibition of increase in mean arterial pressure evoked by McN-A-343 in pithed rats through activation of ganglionic muscarinic receptors and B) the inhibition of fall in arterial pressure evoked by methacholine in anaesthetized rats through activation of vascular muscarinic receptors. To characterize the antimuscarinic potencies of pirenzepine and N-methylatropine, for both antagonists doses were calculated that produce a 10-fold shift to the right of the dose-response curves for A) the pressor response to McN-A-343 (i.v. administration) in pithed rats (D10-p.r.) and B) for the depressor effect to methacholine (i.v. administration) in anaesthetized rats (D10-an.r.), respectively. Whereas N-methylatropine was virtually equieffective in blocking both muscarinic responses (D10-an.r./D10-p.r. approximately equal to 1), pirenzepine, however, was considerably more potent at ganglionic than at vascular muscarinic receptors (D10-an.r./D10-p.r. approximately equal to 16). These data confirm the existence of excitatory ganglionic muscarinic receptors with high affinity for pirenzepine (M1) and provide evidence for the presence of M2 receptors - receptors which show a low sensitivity to pirenzepine - on vascular smooth muscle cells. To further characterize the anticholinergic properties of pirenzepine, its effect on the pressor response to DMPP, a nicotinic ganglionic stimulant, was investigated in pithed rats. A high dose of pirenzepine (1.13 mumol/kg), given i.v., did not affect nicotinic ganglionic transmission.  相似文献   

10.
Acetylcholine induces vasodilation and prostacyclin synthesis in rat lungs   总被引:3,自引:0,他引:3  
Acetylcholine causes pulmonary vasodilation, but its mechanism of action is unclear. We hypothesized that acetylcholine-induced pulmonary vasodilation might be associated with prostacyclin formation. Therefore, we used isolated rat lungs perfused with a recirculating cell- and plasma-free physiological salt solution to study the effect of acetylcholine infusion on pulmonary perfusion pressure, vascular responsiveness and lung prostacyclin production. Acetylcholine (20 micrograms infused over 1 minute) caused immediate vasodilation during ongoing hypoxic vasoconstriction and prolonged depression of subsequent hypoxic and angiotensin II-induced vasoconstrictions. Both effects of acetylcholine were abolished by atropine pretreatment. The prolonged acetylcholine effect, but not the immediate response, was blocked by meclofenamate, an inhibitor of cyclooxygenase. The prolonged effect, but not the immediate response, of acetylcholine was associated with an increase in perfusate 6-keto-PGF1 alpha concentration. The acetylcholine stimulated increase in 6-keto-PGF1 alpha production was inhibited by meclofenamate and by atropine. Thus, blockade of prostacyclin production corresponded with blockade of the prolonged acetylcholine effect. In conclusion, acetylcholine caused in isolated rat lungs an immediate vasodilation and a prolonged, time-dependent depression of vascular responsiveness. Whereas both acetylcholine effects were under muscarinic receptor control, only the prolonged effect depended on the cyclooxygenase pathway and, presumably, prostacyclin synthesis.  相似文献   

11.
We investigated the effect of indomethacin on responses to isoproterenol, bradykinin and nitroglycerin in the feline pulmonary vascular bed when pulmonary vascular resistance was actively increased by infusion of U46619 in order to determine if vasodilator responses to these agents were dependent on the integrity of the cyclooxygenase pathway. Since pulmonary blood flow left atrial pressure were held constant, changes in lobar arterial pressure directly reflect changes in lobar vascular resistance. Intralobar injections of isoproterenol, bradykinin, and nitroglycerin decreased lobar arterial pressure in a dose-related manner. Pulmonary vasodilator responses to the lower and midrange doses of bradykinin and nitrogylcerin were unchanged in the presence of indomethacin whereas pulmonary responses to the highest doses of nitroglycerin and bradykinin were increased by cyclooxygenase blockade. In contrast, pulmonary vasodilator responses to isoproterenol were significantly attenuated in the presence of propranolol, whereas pulmonary vasodilator responses to bradykinin and nitroglycerin were unchanged after beta blockade. The present data indicate that isoproterenol, bladykinin, and nitroglycerin have significant vasodilator activity in the cat when pulmonary vascular tone is actively increased. These data suggest that the formation of vasodilator cyclooxygenase products such as PGI2 do not mediate vasodilator responses to isoproterenol, bradykinin, and nitroglycerin in the feline pulmonary vascular bed.  相似文献   

12.
Acetylcholine causes pulmonary vasodilation, but its mechanism of action is unclear. We hypothesized that acetylcholine-induced pulmonary vasodilation might be associated with prostacyclin formation. Therefore, we used isolated rat lungs perfused with a recirculating cell- and plasma-free physiological salt solution to study the effect of acetylcholine infusion on pulmonary perfusion pressure, vascular responsiveness and lung prostacyclin production. Acetylcholine (20 ug infused over 1 minute) caused immediate vasodilation during ongoing hypoxic vasoconstriction and prolonged depression of subsequent hypoxic and angiotensin II-induced vasoconstrictions. Both effects of acetylcholine were abolished by atropine pretreatment. The prolonged acetylcholine effect, but not the immediate response, was blocked by meclofenamate, an inhibitor of cyclooxygenase. The prolonged effect, but not the immediate response, of acetylcholine was associated with an increase in perfusate 6-keto-PGF concentration. The acetylcholine stimulated increase in 6-keto-PGF production was inhibited by meclofenamate and by atropine. Thus, blockade of prostacyclin production corresponded with blockade of the prolonged acetylcholine effect. In conclusion, acetylcholine caused in isolated rat lungs an immediate vasodilation and a prolonged, time-dependent depression of vascular responsiveness. Whereas both acetylcholine effects were under muscarinic receptor control, only the prolonged effect depended on the cyclooxygenase pathway and, presumably, protacyclin synthesis.  相似文献   

13.
The mechanism by which acetylcholine (ACh) decreases systemic arterial pressure and hindlimb vascular resistance was investigated in the anesthetized rat. ACh injections caused dose-dependent decreases in systemic arterial pressure and hindlimb vascular resistance. N(omega)-nitro-L-arginine methyl ester (L-NAME) had little effect on the magnitude of depressor and vasodilator responses but decreased response duration when baseline parameters were corrected by a nitric oxide (NO) donor infusion. The decrease in the duration of the ACh depressor response was prevented by the administration of excess L-arginine. The L-NAME-resistant component of the depressor response to ACh was attenuated by ebselen, a glutathione peroxidase mimic. The calcium-activated potassium (K(Ca)) antagonists charybdotoxin (ChTX) and apamin decreased the magnitude but not the duration of the hindlimb vasodilator response to ACh. The combination of L-NAME, ChTX, and apamin reduced the magnitude and duration of the vasodilator response to ACh but not to sodium nitroprusside. Vasodepressor and hindlimb vasodilator responses to ACh were not modified by cytochrome P-450 and cyclooxygenase pathway inhibitors. These results suggest that the hindlimb vasodilator response to ACh has an initial L-NAME-resistant component mediated by the activation of K(Ca) channels and a sustained L-NAME-dependent component. The results with ebselen suggest that the L-NAME-resistant component of the depressor response involves a peroxide-sensitive mechanism. The present study suggests that vasodilator responses to ACh are not mediated by cytochrome P-450 products, since miconazole and 1-aminobentriazole alone or in combination did not affect either component of the response. The present data suggest that the hindlimb vasodilator response to ACh in the rat is mediated by two mechanisms with an initial ChTX- and apamin-sensitive, L-NAME-resistant phase not mediated by cytochrome P-450 products and a secondary sustained phase mediated by NO.  相似文献   

14.
Acetylcholine's effect on the distribution of vascular resistance and compliance in the canine pulmonary circulation was determined under control and elevated vascular tone by the arterial, venous, and double occlusion techniques in isolated blood-perfused dog lungs at both constant flow and constant pressure. Large and small blood vessel resistances and compliances were studied in lungs given concentrations of acetylcholine ranging from 2.0 ng/ml to 200 micrograms/ml. The results of this study indicate that acetylcholine dilates large arteries at low concentrations (less than or equal to 20 ng/ml) and constricts small and large veins at concentrations of at least 2 micrograms/ml. Characterization of acetylcholine's effects at constant pulmonary blood flow indicates that 1) large artery vasodilation may be endothelial-derived relaxing factor-mediated because the dilation is blocked with methylene blue; 2) a vasodilator of the arachidonic acid cascade (blocked by ibuprofen), probably prostacyclin, lessens acetylcholine's pressor effects; 3) when vascular tone was increased, acetylcholine's hemodynamic effects were attenuated; and 4) acetylcholine decreased middle compartment and large vessle compliance under control but not elevated vascular tone. Under constant pressure at control vascular tone acetylcholine increases resistance in all segments except the large artery, and at elevated vascular tone the pressor effects were enhanced, and large artery resistance was increased.  相似文献   

15.
Cui YY  Zhu L  Wang H  Advenier C  Chen HZ  Devillier P 《Life sciences》2008,82(17-18):949-955
Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Studies in humans or in animals have suggested that these responses involve cholinergic nerves. The purpose of this study was to investigate the role of the efferent vagal component on airway microvascular leakage induced by instillation of hydrochloric acid (HCl) into the oesophagus of guinea-pigs and the subtype of muscarinic receptors involved. Airway microvascular leakage induced by intra-oesophageal HCl instillation was abolished by bilateral vagotomy or by the nicotinic receptor antagonist, hexamethonium. HCl-induced leakage was inhibited by pretreatment with atropine, a non-specific muscarinic receptor antagonist, and also by pretreatment with either pirenzepine, a muscarinic M(1) receptor antagonist, or 4-DAMP, a muscarinic M(3) receptor antagonist. Pirenzepine was more potent than atropine and 4-DAMP. These antagonists were also studied on airway microvascular leakage or bronchoconstriction induced by intravenous administration of acetylcholine (ACh). Atropine, pirenzepine and 4-DAMP inhibited ACh-induced airway microvascular leakage with similar potencies. In sharp contrast, 4-DAMP and atropine were more potent inhibitors of ACh-induced bronchoconstriction than pirenzepine. Methoctramine, a muscarinic M(2) receptor antagonist, was ineffective in all experimental conditions. These results suggest that airway microvascular leakage caused by HCl intra-oesophageal instillation involves ACh release from vagus nerve terminals and that M(1) and M(3) receptors play a major role in cholinergic-mediated microvascular leakage, whereas M(3) receptors are mainly involved in ACh-induced bronchoconstriction.  相似文献   

16.
Responses to pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide derived from ovine hypothalamus with 68% sequence homology with vasoactive intestinal polypeptide (VIP), were investigated in the pulmonary and hindquarters vascular beds of the anesthetized cat under conditions of controlled blood flow. Injection of the peptide into the perfused lung lobe under elevated tone conditions produced dose-dependent decreases in lobar arterial pressure that were accompanied by biphasic changes in systemic arterial pressure characterized by an initial decrease followed by a secondary increase in pressure. When compared with other vasodilator agents in the pulmonary vascular bed, the relative order of potency was isoproterenol greater than PACAP greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP. In the hindquarters vascular bed, intra-arterial injections of PACAP produced biphasic changes in hindquarters perfusion pressure characterized by initial decreases followed by secondary increases, which were accompanied by biphasic changes in systemic arterial pressure. In terms of relative vasodilator activity in the hindlimb, the order of relative potency was isoproterenol greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP greater than PACAP. PACAP was the only agent that caused a secondary vasoconstrictor response in the hindlimb and produced biphasic changes in systemic arterial pressure. D-Phe2-VIP, a VIP receptor antagonist, blocked the hindquarters vasodilation in response to VIP but had no effect on responses to PACAP. The present investigation shows that PACAP produces pulmonary vasodilation, as well as dilation, and vasoconstriction in the systemic (hindlimb) vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The present study was designed to determine the blood pressure (BP) responses of conscious rats given intravenous (IV) injections of enkephalin derivatives (D-ala2-methionine enkephalinamide, DAMEA; D-ala2-leucine enkephalinamide, DALEA; methionine enkephalinamide, MEA; leucine enkephalinamide, LEA) and the receptor mechanisms mediating the resultant change in BP. IV injection of 1.6–16.0 nmoles of DAMEA or DALEA caused a transient but potent decrease in mean arterial pressure (MAP) and mean heart rate (MHR). LEA and MEA (16.0 nmoles) given IV produced slight pressor responses, which were not associated with concomitant tachycardia whereas 48 nmoles of MEA elicited a hypotensive effect accompanied by a fall in MHR. Pretreatment studies whereby various receptor antagonists (naloxone, diprenorphine, phentolamine, D-L-propranolol or atropine) were given IV 5 min before subsequent IV administration of DAMEA, DALEA, MEA or LEA (16 nmoles) showed that naloxone, diprenorphine and atropine blocked the depressor and bradycardic effects of DALEA and DAMEA. Naloxone and phentolamine suppressed the pressor reponse of both MEA and LEA (16.0 nmoles) while diprenorphine blocked the rise in MAP to only MEA. The results show that DAMEA and DALEA mediate their depressor actions in conscious rats via a negative chronotropic effect through an interaction of muscarinic cholinergic receptors on the myocardium. It is suggested that the pressor response of MEA and LEA may be produced via an -receptor mediated effect on the peripheral vasculature to cause vasoconstriction.  相似文献   

18.
Intermedin/adrenomedullin-2 (IMD/AM2) is a 47 amino acid peptide formed by enzymatic degradation of preprointermedin. The present study was undertaken to investigate the effects of rat IMD (rIMD) in the isolated buffer perfused rat lung (IBPR) under resting conditions and under conditions of elevated pulmonary vasoconstrictor tone (PVT). Under resting conditions in the IBPR, rIMD had little or no activity. When PVT was actively increased by infusion of U46619, bolus injection of IMD decreased pulmonary arterial pressure (PAP) in a dose-dependent manner. Since the pulmonary perfusion rate and left atrial pressure were constant, these reductions in PAP directly reflect reductions in pulmonary vascular resistance (PVR). The pulmonary vasodilator response to rIMD, when compared to calcitonin gene-related peptide (CGRP) on a molar basis, was greater at the lowest and midrange doses. The degree of inhibition by CGRP8-37 on pulmonary vasodilator response to rIMD was significantly less when compared to CGRP. Pretreatment with L-nitro-arginine-methyl ester (L-NAME), unlike meclofenamate and glybenclamide, significantly reduced the pulmonary vasodilator responses to rIMD. rIMD administration induced cross-tachyphylaxis to the pulmonary vasodilator response to CGRP whereas CGRP administration did not alter the ability of rIMD to dilate the IBPR. Pulmonary vasodilator responses to repeated injections of rIMD did not undergo tachyphylaxis. The present data demonstrate rIMD possesses direct vasodilator activity in the rat pulmonary vascular bed. The present data suggest activation of CGRP1 receptors and release of nitric oxide (NO*) mediate the pulmonary vasodilator response to rIMD whereas cyclooxygenase products and KATP channels do not contribute to the pulmonary vasodilator response to rIMD. The ability of rIMD to induce heterologous desensitization of CGRP1 receptor activation, to retain much of its pulmonary vasodilator activity after inhibition of CGRP1 receptors, and to lack homologous desensitization together suggests the pulmonary, unlike the systemic, vasodilator response to rIMD may depend on other vasodilator mechanisms including receptors in the calcitonin-receptor-like-receptor (CRLR) family.  相似文献   

19.
The purpose of the present study was to determine the influence of NG-nitro-L-arginine methyl ester (L-NAME) on pulmonary vascular responses to endothelium-dependent relaxing factor- (EDRF) dependent and EDRF-independent substances in the pulmonary vascular bed of the anesthetized cat. Because pulmonary blood flow and left atrial pressure were kept constant, changes in lobar arterial pressure directly reflect changes in pulmonary vascular resistance. When pulmonary vasomotor tone was actively increased by intralobar infusion of U-46619, intralobar bolus injections of acetylcholine, bradykinin, serotonin, and 5-carboxyamidotryptamine (a serotonin1A receptor agonist) decreased lobar arterial pressure in a dose-related manner. The pulmonary vasodilator response to serotonin, but not to 5-carboxyamidotryptamine, acetylcholine, and bradykinin, was significantly decreased by L-NAME (100 mg/kg i.v.). Administration of ritanserin (0.5 mg/kg i.v.), but not L-arginine (1 g/kg i.v. with 60 mg.kg-1 x min-1 i.v. infusion), reversed the inhibitory effects of L-NAME on the pulmonary vasodilator response to serotonin and abolished the enhanced pulmonary vasoconstrictor response to (+-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoproprane hydrochloride (a serotonin2 receptor agonist) after L-NAME administration. In conclusion, the present experiments suggest that L-NAME inhibits the pulmonary vasodilator response to serotonin by increasing the sensitivity of serotonin2 receptor-mediated vasoconstriction and not by inhibiting EDRF formation. Because the pulmonary vasodilator responses to bolus administration of acetylcholine and bradykinin were not inhibited by L-NAME, these data suggest that L-NAME does not appear to be an adequate probe to study the role of endogenous EDRF in the adult feline pulmonary vascular bed in vivo.  相似文献   

20.
After periods of microgravity or bed rest, individuals often exhibit reduced Vo(2 max), hypovolemia, cardiac and vascular effects, and autonomic dysfunction. Recently, alterations in expression of vascular and central nervous system NO synthase (NOS) have been observed in hindlimb-unloaded (HU) rats, a model used to simulate physiological effects of microgravity or bed rest. We examined the effects of 14 days of hindlimb unloading on hemodynamic responses to systemic NOS inhibition in conscious control and HU rats. Because differences in NO and autonomic regulation might occur after hindlimb unloading, we also evaluated potential differences in resting autonomic tone and effects of NOS inhibition after autonomic blockade. Administration of nitro-L-arginine methyl ester (L-NAME; 20 mg/kg iv) increased mean arterial pressure (MAP) to similar levels in control and HU rats. However, the change in MAP in response to L-NAME was less in HU rats, that had an elevated baseline MAP. In separate experiments, atropine (1 mg/kg iv) increased heart rate (HR) in control but not HU rats. Subsequent administration of the ganglionic blocker hexamethonium (30 mg/kg iv) decreased MAP and HR to a greater extent in HU rats. Administration of L-NAME after autonomic blockade increased MAP in both groups to a greater extent compared with intact conditions. However, the pressor response to L-NAME was still reduced in HU rats. These data suggest that hindlimb unloading in rats reduces peripheral NO as well as cardiac parasympathetic tone. Along with elevations in sympathetic tone, these effects likely contribute to alterations in vascular control and changes in autonomic reflex function following spaceflight or bed rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号