首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this study was to explore effects of hypoxia, glucose deprivation (HGD) and recovery on expression and activities of equilibrative nucleoside transporters (rENT) and concentrative nucleoside transporters (rCNT) in rat astrocytes in primary culture. Amounts of cellular ATP in the control group (CG, 5% CO2 in air, medium containing 7 mM d-glucose, 1 mM Na+-pyruvate, 1 h), HGD group (2% O2/5% CO2 in N2, pyruvate-free medium containing 1.5 mM d-glucose and 10 mM 2-deoxy-d-glucose, 1 h) and recovery group (RG, HGD for 1 h, followed by 1 h exposure to the same conditions as the CG) were (nmol/mg protein, n = 4) 18 ± 1.6, 4.9 ± 0.6 and 10.1 ± 0.8, respectively. Extracellular adenosine concentrations increased from (nM, n = 3) 42 ± 4 in the CG, to 99 ± 8 in the HGD group and 86 ± 3 in the RG. Real-time PCR and immunoblotting revealed that in the HGD group and RG, the amounts of rENT1 mRNA and protein were reduced to 40 and 50%, when compared to the CG, respectively. Astrocyte cultures took up [3H]adenosine by concentrative and equilibrative transport processes; however, rENT1-mediated uptake was absent in the RG and cultures from the RG took up significantly less [3H]adenosine by equilibrative mechanisms than cultures from the CG.  相似文献   

3.
RT-PCR of RNA isolated from monolayers of the human colonic epithelial cell lines T84 and Caco-2 demonstrated the presence of mRNA for the two cloned Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2, but not for the cloned Na+-dependent concentrative nucleoside transporters, CNT1 and CNT2. Uptake of [3H]uridine by cell monolayers in balanced Na+-containing and Na+-free media confirmed the presence of only Na+-independent nucleoside transport mechanisms. This uptake was decreased by 70-75% in the presence of 1 microM nitrobenzylthioinosine, a concentration that completely inhibits ENT1, and was completely blocked by the addition of 10 microM dipyridamole, a concentration that inhibits both ENT1 and ENT2. These findings indicate the presence in T84 and Caco-2 cells of two functional Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2.  相似文献   

4.
In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (Na+-dependent) CNT nucleoside transport proteins. The human and rat nucleoside transport proteins hENT1, rENT1, hENT2 and rENT2 were produced in Xenopus oocytes and investigated for their ability to transport three 3'-deoxy-nucleoside analogues, ddC (2'3'-dideoxycytidine), AZT (3'-azido-3'-deoxythymidine) and ddI (2'3'-dideoxyinosine), used in human immunodeficiency virus (HIV) therapy. The results show, for the first time, that the ENT2 transporter isoform represents a mechanism for cellular uptake of these clinically important nucleoside drugs. Recombinant h/rENT2 transported ddC, ddI and AZT, whilst h/rENT1 transported only ddC and ddI. Relative to uridine, h/rENT2 mediated substantially larger fluxes of ddC and ddI than h/rENT1. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 transport-positive for AZT and enhanced the uptake of both ddC and ddI, identifying this region as a major site of 3'-deoxy-nucleoside drug interaction.  相似文献   

5.
In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (Na+-dependent) CNT nucleoside transport proteins. The human and rat nucleoside transport proteins hENT1, rENT1, hENT2 and rENT2 were produced in Xenopus oocytes and investigated for their ability to transport three 3'-deoxy-nucleoside analogues, ddC (2' 3'-dideoxycytidine), AZT (3'-azido-3'-deoxythymidine)and ddI (2' 3'-dideoxyinosine), used in human immunodeficiency virus (HIV) therapy. The results show, for the first time, that the ENT2 transporter isoform represents a mechanism for cellular uptake of these clinically important nucleoside drugs. Recombinant h/rENT2 transported ddC, ddI and AZT, whilst h/rENT1 transported only ddC and ddI. Relative to uridine, h/rENT2 mediated substantially larger fluxes of ddC and ddI than h/rENT1. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 transport-positive for AZT and enhanced the uptake of both ddC and ddI, identifying this region as a major site of 3'-deoxy-nucleoside drug interaction.  相似文献   

6.
Nucleoside transport processes may play a role in regulating endogenous levels of the inhibitory neuromodulator adenosine in brain. The cDNAs encoding species homologues of one member of the equilibrative nucleoside transporter (ENT) gene family have recently been isolated from rat (rENT1) and human (hENT1) tissues. The current study used RT-PCR, northern blot, in situ hybridization, and [3H]nitrobenzylthioinosine autoradiography to determine the distribution of mRNA and protein for ENT1 in rat and human brain. Northern blot analysis indicated that hENT1 mRNA is widely distributed in adult human brain. 35S-labeled sense and antisense riboprobes, transcribed from a 153-bp segment of rENT1, were hybridized to fresh frozen coronal sections from adult rat brain and revealed widespread rENT1 mRNA in pyramidal neurons of the hippocampus, granule neurons of the dentate gyrus, Purkinje and granule neurons of the cerebellum, and cortical and striatal neurons. Regional localization in rat brain was confirmed by RT-PCR. Thus, ENT1 mRNA has a wide cellular and regional distribution in brain, indicating that this nucleoside transporter subtype may be important in regulating intra- and extracellular levels of adenosine in brain.  相似文献   

7.
The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.  相似文献   

8.
The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.  相似文献   

9.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

10.
The rat equilibrative nucleoside transporters rENT1 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine (NBMPR). Structurally, the proteins have a large glycosylated extracellular loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, we have generated chimeras between NBMPR-sensitive rENT1 and NBMPR-insensitive rENT2, using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) to identify structural domains of rENT1 responsible for transport inhibition by NBMPR. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 NBMPR-insensitive. Domain swaps within the amino-terminal halves of rENT1 and rENT2 identified two contiguous regions, TMs 3-4 (rENT1 residues 100-171) and TMs 5-6 (rENT1 residues 172-231), as the major sites of NBMPR interaction. Since NBMPR is a nucleoside analogue and functions as a competitive inhibitor of zero-trans nucleoside influx, TMs 3-6 are likely to form parts of the substrate translocation channel.  相似文献   

11.
Nucleoside transport was examined in freshly isolated mouse intestinal epithelial cells. The uptake of formycin B, the C nucleoside analog of inosine, was concentrative and required extracellular sodium. The initial rate of sodium-dependent formycin B transport was saturable with a Km of 45 +/- 3 microM. The purine nucleosides adenosine, inosine, guanosine, and deoxyadenosine were all good inhibitors of sodium-dependent formycin B transport with 50% inhibition (IC50) observed at concentrations less than 30 microM. Of the pyrimidine nucleosides examined, only uridine (IC50, 41 +/- 9 microM) was a good inhibitor. Thymidine and cytidine were poor inhibitors with IC50 values greater than 300 microM. Direct measurements of [3H]thymidine transport revealed, however, that the uptake of this nucleoside was also mediated by a sodium-dependent mechanism. Thymidine transport was inhibited by low concentrations of cytidine, uridine, adenosine, and deoxyadenosine (IC50 values less than 25 microM), but not by formycin B, inosine, or guanosine (IC50 values greater than 600 microM). These data indicate that there are two sodium-dependent mechanisms for nucleoside transport in mouse intestinal epithelial cells, and that formycin B and thymidine may serve as model substrates to distinguish between these transporters. Neither of these sodium-dependent transport mechanisms was inhibited by nitrobenzylmercaptopurine riboside (10 microM), a potent inhibitor of one of the equilibrative (facilitated diffusion) nucleoside transporters found in many cells.  相似文献   

12.
Sodium-dependent nucleoside transport in mouse leukemia L1210 cells   总被引:1,自引:0,他引:1  
Nucleoside permeation in L1210/AM cells is mediated by (a) equilibrative (facilitated diffusion) transporters of two types and by (b) a concentrative Na(+)-dependent transport system of low sensitivity to nitrobenzylthioinosine and dipyridamole, classical inhibitors of equilibrative nucleoside transport. In medium containing 10 microM dipyridamole and 20 microM adenosine, the equilibrative nucleoside transport systems of L1210/AM cells were substantially inhibited and the unimpaired activity of the Na(+)-dependent nucleoside transport system resulted in the cellular accumulation of free adenosine to 86 microM in 5 min, a concentration three times greater than the steady-state levels of adenosine achieved without dipyridamole. Uphill adenosine transport was not observed when extracellular Na+ was replaced by Li+, K+, Cs+, or N-methyl-D-glucammonium ions, or after treatment of the cells with nystatin, a Na+ ionophore. These findings show that concentrative nucleoside transport activity in L1210/AM cells required an inward transmembrane Na+ gradient. Treatment of cells in sodium medium with 2 mM furosemide in the absence or presence of 2 mM ouabain inhibited Na(+)-dependent adenosine transport by 50 and 75%, respectively. However, because treatment of cells with either agent in Na(+)-free medium decreased adenosine transport by only 25%, part of this inhibition may be secondary to the effects of furosemide and ouabain on the ionic content of the cells. Substitution of extracellular Cl- by SO4(-2) or SCN- had no effect on the concentrative influx of adenosine.  相似文献   

13.
To evaluate the mechanisms involved in macrophage proliferation and activation, we studied the regulation of the nucleoside transport systems. In murine bone marrow-derived macrophages, the nucleosides required for DNA and RNA synthesis are recruited from the extracellular medium. M-CSF induced macrophage proliferation and DNA and RNA synthesis, whereas interferon gamma (IFN-gamma) led to activation, blocked proliferation, and induced only RNA synthesis. Macrophages express at least the concentrative systems N1 and N2 (CNT2 and CNT1 genes, respectively) and the equilibrative systems es and ei (ENT1 and ENT2 genes, respectively). Incubation with M-CSF only up-regulated the equilibrative system es. Inhibition of this transport system blocked M-CSF-dependent proliferation. Treatment with IFN-gamma only induced the concentrative N1 and N2 systems. IFN-gamma also down-regulated the increased expression of the es equilibrative system induced by M-CSF. Thus, macrophage proliferation and activation require selective regulation of nucleoside transporters and may respond to specific requirements for DNA and RNA synthesis. This report also shows that the nucleoside transporters are critical for macrophage proliferation and activation.  相似文献   

14.
The molecular cloning of cDNAs encoding nucleoside transporter proteins has greatly advanced understanding of how nucleoside permeants are translocated across cell membranes. The nucleoside transporter proteins identified thus far have been categorized into five distinct superfamilies. Two of these superfamilies, the equilibrative and concentrative nucleoside transporters, have human members and these will be examined in depth in this review. The human equilibrative nucleoside transporters translocate nucleosides and nucleobases bidirectionally down their concentration gradients and are important in the uptake of anticancer and antiviral nucleoside drugs. The human concentrative nucleoside transporters cotranslocate nucleosides and sodium unidirectionally against the nucleoside concentration gradients and play a vital role in certain tissues. The regulation of nucleoside and nucleobase transporters is being studied more intensely now that more tools are available. This review provides an overview of recent advances in the molecular biology and regulation of the nucleoside and nucleobase transporters.  相似文献   

15.
In a simple salts medium, monolayers of IEC-6 intestinal cells achieved concentrations of unmetabolized formycin B (an analog of inosine) about 6-fold higher than in the medium. Rates of formycin B influx were a saturable function of Na+ concentrations in the medium. Although IEC-6 cells possess sites with high affinity for nitrobenzylthioinosine, a potent inhibitor of equilibrative (facilitated diffusion) nucleoside transport systems in certain cell types, the inhibitor had only minor effects on formycin B uptake in IEC-6 cells, but reduced efflux of the analog from these cells. These findings indicate the joint presence in IEC-6 cells of nucleoside transporters of two types, one that is concentrative and Na+-dependent, and another that is sensitive to nitrobenzylthioinosine and apparently equilibrative.  相似文献   

16.
Nucleoside transport in Walker 256 cells was reexamined using formycin B, a nonmetabolized analog of inosine. In the presence of dipyridamole to inhibit the equilibrative (facilitated diffusion) transporter previously described in these cells, the initial rate of uptake of 1 microM formycin B was 10-fold greater in Na(+)-containing medium than in Na(+)-free medium. In the presence of Na+ and dipyridamole the intracellular concentration of formycin B exceeded that in the medium within one min and was 6-fold greater than that of the medium by 5 min. Na(+)-dependent transport of formycin B was inhibited by low concentrations of inosine, but not thymidine. Furthermore, Na(+)-dependent transport of uridine, but not thymidine, was apparent in the presence of dipyridamole. These data indicate that Walker 256 cells have, in addition to the previously described equilibrative transporter, a concentrative nucleoside transporter. The specificity of this transporter appears to correspond to one of the two Na(+)-dependent transporters previously described in mouse intestinal epithelial cells.  相似文献   

17.
S49 murine lymphoma cells were examined for expression of various nucleoside transport systems using a non-metabolized nucleoside, formycin B, as substrate. Nitrobenzylthioinosine (NBTI)-sensitive, facilitated transport was the primary nucleoside transport system of the cells. The cells also expressed very low levels of NBTI-resistant, facilitated nucleoside transport as well as of Na(+)-dependent, concentrative formycin B transport. Concentrative transport was specific for uridine and purine nucleosides, just as the concentrative nucleoside transporters of other mouse and rat cells. A nucleoside transport mutant of S49 cells, AE-1, lacked both the NBTI-sensitive, facilitated and Na(+)-dependent, concentrative formycin B transport activity, but Na(+)-dependent, concentrative transport of alpha-aminoisobutyrate was not affected.  相似文献   

18.
Leishmania donovani express two members of the equilibrative nucleoside transporter family; LdNT1 encoded by two closely related and linked genes, LdNT1.1 and LdNT1.2, that transport adenosine and pyrimidine nucleosides and LdNT2 that transports inosine and guanosine exclusively. LdNT1.1, LdNT1.2, and LdNT2 have been expressed in Xenopus laevis oocytes and found to be electrogenic in the presence of nucleoside ligands for which they mediate transport. Further analysis revealed that ligand uptake and transport currents through LdNT1-type transporters are proton-dependent. In addition to the flux of protons that is coupled to the transport reaction, LdNT1 transporters mediate a variable constitutive proton conductance that is blocked by substrates and dipyridamole. Surprisingly, LdNT1.1 and LdNT1.2 exhibit different electrogenic properties, despite their close sequence homology. This electrophysiological study provides the first demonstration that members of the equilibrative nucleoside transporter family can be electrogenic and establishes that these three permeases, unlike their mammalian counterparts, are probably concentrative rather than facilitative transporters.  相似文献   

19.
Nucleosides are hydrophilic molecules and require specialized transport proteins for permeation of cell membranes. There are two types of nucleoside transport processes: equilibrative bidirectional processes driven by chemical gradients and inwardly directed concentrative processes driven by the sodium electrochemical gradient. The equilibrative nucleoside transport processes (es, ei) are found in most mammalian cell types, whereas the concentrative nucleoside transport processes (cit, cif, cib, csg, cs) are present primarily in specialized epithelia. Using a variety of cloning strategies and functional expression in oocytes of Xenopus laevis, we have isolated and characterized cDNAs encoding the rat and human nucleoside transporter proteins of the four major nucleoside transport processes of mammalian cells (es, ei, cit, cif). From the sequence relationships of these proteins with each other and with sequences in the public data bases, we have concluded that the equilibrative and concentrative nucleoside transport processes are mediated by members of two previously unrecognized groups of integral membrane proteins, which we have designated the equilibrative nucleoside transporter (ENT) and the concentrative nucleoside transporter (CNT) protein families. This review summarizes the current state of knowledge in the molecular biology of the ENT and CNT protein families, focusing on the characteristics of the four human (h) and rat (r) nucleoside transport proteins (r/hENT1, r/hENT2, r/hCNT1, r/hCNT2).  相似文献   

20.
We have cloned and functionally expressed a sodium-dependent human nucleoside transporter, hCNT2, from a CNS cancer cell line U251. Our cDNA clone of hCNT2 had the same predicted amino acid sequence as the previously cloned hCNT2 transporter. Of the several cell lines studied, the best hCNT2 transport function was obtained when transiently expressed in U251 cells. Na(+)-dependent uptake of [3H]inosine in U251 cells transiently expressing hCNT2 was 50-fold greater than that in non-transfected cells, and uptake in Na(+)-containing medium was approximately 30-fold higher than that at Na(+)-free condition. The hCNT2 displayed saturable uptake of [3H]inosine with K(m) of 12.8 microM and V(max) of 6.66 pmol/mg protein/5 min. Uptake of [3H]inosine was significantly inhibited by the purine nucleoside drugs dideoxyinosine and cladribine, but not by acyclic nucleosides including acyclovir, ganciclovir, and their prodrugs valacyclovir and valganciclovir. This indicates that the closed ribose ring is important for binding of nucleoside drugs to hCNT2. Among several pyrimidine nucleosides, hCNT2 favorably interacted with the uridine analogue floxuridine. Interestingly, we found that benzimidazole analogues, including maribavir, 5,6-dichloro-2-bromo-1-beta-D-ribofuranosylbenzimidazole (BDCRB), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), were strong inhibitors of inosine transport, even though they have a significantly different heterocycle structure compared to a typical purine ring. As measured by GeneChip arrays, mRNA expression of hCNT2 in human duodenum was 15-fold greater than that of hCNT1 or hENT2. Further, the rCNT2 expression in rat duodenum was 20-fold higher than rCNT1, rENT1 or rENT2. This suggests that hCNT2 (and rCNT2) may have a significant role in uptake of nucleoside drugs from the intestine and is a potential transporter target for the development of nucleoside and nucleoside-mimetic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号