首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) could stimulate or inhibit NF-κB pathways. However, most results have been obtained on the basis of the exogenous ROS and the molecular target of ROS in NF-κB signalling pathways has remained unclear. Here, the oral squamous carcinoma (OSC) cells, with a mild difference in the endogenous ROS level, were used to investigate how slight fluctuation of the endogenous ROS regulates NF-κB activation. This study demonstrates that NF-κB-inducing kinase (NIK) is a critical target of the endogenous ROS in NF-κB pathways. The results indicate that ROS may function as a physiological signalling modulator on NF-κB signalling cascades through its ability to facilitate the activity of NIK and subsequent NF-κB transactivation. In addition, the data are useful to explain why the altered intracellular microenvironment related to redox state may influence biological behaviours of cancer cells.  相似文献   

2.
IL-1 receptor-associated kinase modulates host responsiveness to endotoxin   总被引:19,自引:0,他引:19  
Endotoxin triggers many of the inflammatory, hemodynamic, and hematological derangements of Gram-negative septic shock. Recent genetic studies in mice have identified the Toll-like receptor 4 as the transmembrane endotoxin signal transducer. The IL-1 intracellular signaling pathway has been implicated in Toll-like receptor signal transduction. LPS-induced activation of the IL-1 receptor-associated kinase (IRAK), and the influence of IRAK on intracellular signaling and cellular responses to endotoxin has not been explored in relevant innate immune cells. We demonstrate that LPS activates IRAK in murine macrophages. IRAK-deficient macrophages, in contrast, are resistant to LPS. Deletion of IRAK disrupts several endotoxin-triggered signaling cascades. Furthermore, macrophages lacking IRAK exhibit impaired LPS-stimulated TNF-alpha production, and IRAK-deficient mice withstand the lethal effects of LPS. These findings, coupled with the critical role for IRAK in IL-1 and IL-18 signal transduction, demonstrate the importance of this kinase and the IL-1/Toll signaling cassette in sensing and responding to Gram-negative infection.  相似文献   

3.
4.
The innate immune response is an important defense against pathogenic agents. A component of this response is the NF-kappaB-dependent activation of genes encoding inflammatory cytokines such as interleukin-8 (IL-8) and cell adhesion molecules like E-selectin. Members of the serine/threonine innate immune kinase family of proteins have been proposed to mediate the innate immune response. One serine/threonine innate immune kinase family member, the mouse Pelle-like kinase/human interleukin-1 receptor-associated kinase (mPLK/IRAK), has been proposed to play an obligate role in promoting IL-1-mediated inflammation. However, it is currently unknown whether mPLK/IRAK catalytic activity is required for IL-1-dependent NF-kappaB activation. The present study demonstrates that mPLK/IRAK catalytic activity is not required for IL-1-mediated activation of an NF-kappaB-dependent signal. Intriguingly, catalytically inactive mPLK/IRAK inhibits type 1 tumor necrosis factor (TNF) receptor-dependent NF-kappaB activation. The pathway through which mPLK/IRAK mediates this TNF response is TRADD- and TRAF2-independent. Our data suggest that in addition to its role in IL-1 signaling, mPLK/IRAK is a component of a novel signal transduction pathway through which TNF R1 activates NF-kappaB-dependent gene expression.  相似文献   

5.
Nitric oxide (NO) has been identified as a fundamental molecule that interplays with reactive oxygen species (ROS) in determining cell fate. As a previous study indicated that ROS was stimulated in evodiamine-induced human melanoma A375-S2 cell apoptosis, the goal of this study was to investigate the role of NO in the cells. In this study, it was found that evodiamine has a strong inductive effect on NO production synthesized by inducible NOS (iNOS) enzyme in a positive-feedback manner. The generated NO was further showed to induce apoptosis and cell cycle arrest and linked to the activation of p53 and p21. After interruption of p38 and nuclear factor-κB (NF-κB) by pre-treatment with SB203580 and PDTC, iNOS expression, NO synthesis and cell damage were all significantly blocked. It was concluded that p38 and NF-κB were critical to the NO producing system, which contributed greatly to the apoptosis and cell cycle arrest in evodiamine-incubated cells.  相似文献   

6.
IRAK4 is a central kinase in innate immunity, but the role of its kinase activity is controversial. The mechanism of activation for IRAK4 is currently unknown, and little is known about the role of IRAK4 kinase in cytokine production, particularly in different human cell types. We show IRAK4 autophosphorylation occurs by an intermolecular reaction and that autophosphorylation is required for full catalytic activity of the kinase. Phosphorylation of any two of the residues Thr-342, Thr-345, and Ser-346 is required for full activity, and the death domain regulates the activation of IRAK4. Using antibodies against activated IRAK4, we demonstrate that IRAK4 becomes phosphorylated in human cells following stimulation by IL-1R and Toll-like receptor agonists, which can be blocked pharmacologically by a dual inhibitor of IRAK4 and IRAK1. Interestingly, in dermal fibroblasts, although complete inhibition of IRAK4 kinase activity does not inhibit IL-1-induced IL-6 production, NF-κB, or MAPK activation, there is complete ablation of these processes in IRAK4-deficient cells. In contrast, the inhibition of IRAK kinase activity in primary human monocytes reduces R848-induced IL-6 production with minimal effect on NF-κB or MAPK activation. Taken together, these studies define the mechanism of IRAK4 activation and highlight the differential role of IRAK4 kinase activity in different human cell types as well as the distinct roles IRAK4 scaffolding and kinase functions play.  相似文献   

7.
8.
The preventive effect of 20(S)-ginsenoside Rg3 (20(S)-Rg3) on lipopolysaccharide (LPS)-induced oxidative tissue injury in rats was investigated in this study. The elevated serum nitrite/nitrate, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and creatinine levels in LPS-treated control rats were significantly decreased following 15 consecutive days of 20(S)-Rg3 administration. In addition, thiobarbituric acid-reactive substance levels in the serum, liver and kidney were dose-dependently lower in 20(S)-Rg3-treated groups than in the LPS-treated control group. The nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) protein expressions in the liver and kidney were significantly increased by LPS treatment. However, the 20(S)-Rg3 administrations significantly decreased these protein expressions except for HO-1 in the liver. On the other hand, in the kidney, oral administration of 20(S)-Rg3 showed a tendency to reduce NF-κB and iNOS protein expressions and also significantly reduced the elevated COX-2 and HO-1 protein expressions at a dose of 10 mg/kg body weight/day. All these results suggest the preventive effect of 20(S)-Rg3 against LPS-induced acute oxidative damage in the liver and kidney and the preventive effect of 20(S)-Rg3 administration against LPS toxicity was thought to be more predominant in the liver than kidney.  相似文献   

9.
10.
11.
Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-kappaB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.  相似文献   

12.
13.
The interleukin-1 receptor-associated kinase (IRAK) was first described as a signal transducer for interleukin-1 (IL-1) and has later been implicated in signal transduction of other members of the Toll/IL-1 receptor family. We now report the identification and characterization of a novel IRAK-like molecule. In contrast to the ubiquitously expressed IRAK and IRAK-2, this new IRAK-like molecule is found mainly in cells of monomyeloic origin and is, therefore, designated IRAK-M. Although IRAK-M and IRAK-2 exhibit only a negligible autophosphorylation activity, they can reconstitute the IL-1 response in a 293 mutant cell line lacking IRAK. In addition, we show for the first time that members of the IRAK family are indispensable elements of lipopolysaccharide signal transduction. The discovery of IRAK-M adds another level of complexity to our understanding of signaling by members of the Toll/IL-1 receptor family.  相似文献   

14.
The signaling pathway downstream of the mammalian interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) is evolutionally conserved with that mediated by the Drosophila Toll protein. Toll initiates its signal through the adapter molecule Tube and the serine-threonine kinase Pelle. Pelle is highly homologous to members of the IL-1R-associated kinase (IRAK) family in mammals. Recently, a novel Pelle-interacting protein called Pellino was identified in Drosophila. We now report a mammalian counterpart of Pellino, termed Pellino 1, which is required for NF kappa B activation and IL-8 gene expression in response to IL-1, probably through its signal-dependent interaction with IRAK4, IRAK, and the tumor necrosis factor receptor-associated factor 6 (TRAF6). The Pellino 1-IRAK-IRAK4-TRAF6 signaling complex is likely to be intermediate, located between the IL-1 receptor complex and the TAK1 complex in the IL-1 pathway.  相似文献   

15.
Mycoepoxydiene (MED) is a polyketide isolated from a marine fungus associated with mangrove forests. MED has been shown to be able to induce cell cycle arrest and cancer cell apoptosis. However, its effects on inflammatory response are unclear. Herein we showed that MED exhibited inhibitory effect on inflammatory response induced by lipopolysaccharide (LPS). MED significantly inhibited LPS-induced expression of pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and nitric oxide (NO) in macrophages. MED inhibited LPS-induced nuclear translocation of nuclear factor (NF)-κB (NF-κB) p65, IκB degradation, IκB kinase (IKK) phosphorylation, and the activation of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38, suggesting that MED blocks the activation of both NF-κB and mitogen-activated protein kinase (MAPK) pathways. Furthermore, the effects of MED on LPS-induced activation of upstream signaling molecules such as transforming growth factor-β–activated kinase 1 (TAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor associated kinases1 (IRAK1) were investigated. MED significantly inhibited TAK1 phosphorylation and TRAF6 polyubiquitination, but not IRAK1 phosphorylation and TRAF6 dimerization, indicating that MED inhibits LPS-induced inflammatory responses at least in part through suppression of TRAF6 polyubiquitination. Moreover, MED protected mice from LPS-induced endotoxin shock by reducing serum inflammatory cytokines. These results suggest that MED is a potential lead compound for the development of a novel nonsteroidal anti-inflammatory drug.  相似文献   

16.
Interleukin-1 (IL-1) stimulation leads to the recruitment of interleukin-1 receptor-associated kinase (IRAK) to the IL-1 receptor, where IRAK is phosphorylated, ubiquitinated, and eventually degraded. Kinase-inactive mutant IRAK is still phosphorylated in response to IL-1 stimulation when it is transfected into IRAK-deficient cells, suggesting that there must be an IRAK kinase in the pathway. The fact that IRAK4, another IRAK family member necessary for the IL-1 pathway, is able to phosphorylate IRAK in vitro suggests that IRAK4 might be the IRAK kinase. However, we now found that the IRAK4 kinase-inactive mutant had the same ability as the wild-type IRAK4 in restoring IL-1-mediated signaling in human IRAK4-deficient cells, including NFkappaB-dependent reporter gene expression, the activation of NFkappaB and JNK, and endogenous IL-8 gene expression. These results strongly indicate that the kinase activity of human IRAK4 is not necessary for IL-1 signaling. Furthermore, we showed that the kinase activity of IRAK4 was not necessary for IL-1-induced IRAK phosphorylation, suggesting that IRAK phosphorylation can probably be achieved either by autophosphorylation or by trans-phosphorylation through IRAK4. In support of this, only the impairment of the kinase activity of both IRAK and IRAK4 efficiently abolished the IL-1 pathway, demonstrating that the kinase activity of IRAK and IRAK4 is redundant for IL-1-mediated signaling. Moreover, consistent with the fact that IRAK4 is a necessary component of the IL-1 pathway, we found that IRAK4 was required for the efficient recruitment of IRAK to the IL-1 receptor complex.  相似文献   

17.
Signaling events induced by lipopolysaccharide-activated toll-like receptor 2.   总被引:30,自引:0,他引:30  
Human Toll-like receptor 2 (TLR2) is a signaling receptor that responds to LPS and activates NF-kappaB. Here, we investigate further the events triggered by TLR2 in response to LPS. We show that TLR2 associates with the high-affinity LPS binding protein membrane CD14 to serve as an LPS receptor complex, and that LPS treatment enhances the oligomerization of TLR2. Concomitant with receptor oligomerization, the IL-1R-associated kinase (IRAK) is recruited to the TLR2 complex. Intracellular deletion variants of TLR2 lacking C-terminal 13 or 141 aa fail to recruit IRAK, which is consistent with the inability of these mutants to transmit LPS cellular signaling. Moreover, both deletion mutants could still form complexes with wild-type TLR2 and act in a dominant-negative (DN) fashion to block TLR2-mediated signal transduction. DN constructs of myeloid differentiation protein, IRAK, TNF receptor-associated factor 6, and NF-kappaB-inducing kinase, when coexpressed with TLR2, abrogate TLR2-mediated NF-kappaB activation. These results reveal a conserved signaling pathway for TLR2 and IL-1Rs and suggest a molecular mechanism for the inhibition of TLR2 by DN variants.  相似文献   

18.
19.
20.
The interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK1) is a member of the IRAK kinase family that plays a pivotal role in the Toll/IL-1 receptor (TIR) family signaling cascade. We have identified a novel splice variant, IRAK1c, which lacks a region encoded by exon 11 of the IRAK1 gene. IRAK1c expression was confirmed by both RNA and protein detection. Although both IRAK1 and IRAK1c are expressed in most tissues tested, IRAK1c is the predominant form of IRAK1 expressed in the brain. Unlike IRAK1, IRAK1c lacks kinase activity and cannot be phosphorylated by IRAK4. However, IRAK1c retains the ability to strongly interact with IRAK2, MyD88, Tollip, and TRAF6. Overexpression of IRAK1c suppressed NF-kappaB activation and blocked IL-1beta-induced IL-6 as well as lipopolysaccharide- and CpG-induced tumor necrosis factor alpha production in multiple cellular systems. Mechanistically, we provide evidence that IRAK1c functions as a dominant negative by failing to be phosphorylated by IRAK4, thus remaining associated with Tollip and blocking NF-kappaB activation. The presence of a regulated, alternative splice variant of IRAK1 that functions as a kinase-dead, dominant-negative protein adds further complexity to the variety of mechanisms that regulate TIR signaling and the subsequent inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号