首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The glycosylation of integrins and other cell surface receptors is altered in many transformed cells. Notably, an increase in the number of beta1,6-branched N-linked oligosaccharides correlates strongly with invasive growth of cells. An ectopic expression of the Golgi enzyme N-acetylglucosaminyltransferase V (GlcNAc-TV), which forms beta1,6 linkages, promotes metastasis of a number of cell types. It is shown here that the 16-kDa transmembrane subunit (16K) of vacuolar H(+)-ATPase suppresses beta1,6 branching of beta(1) integrin and the epidermal growth factor receptor. Overexpression of 16K inhibits cell adhesion and invasion. 16K contains four hydrophobic membrane-spanning alpha-helices, and its ability to influence glycosylation is localized primarily within the second and fourth membrane-spanning alpha-helices. 16K also interacts directly with the transmembrane domain of beta(1) integrin, but its effects on glycosylation were independent of its binding to beta(1) integrin. These data link cell surface tumor-related glycosylation to a component of the enzyme responsible for acidification of the exocytic pathway.  相似文献   

2.
Integrins mediate adhesive interactions between cells and the extracellular matrix, and play a role in cell migration, proliferation, differentiation, cytoskeletal organization, and signal transduction. We have identified an interaction between the beta(1) integrin and the 16-kDa subunit of vacuolar H(+)-ATPase (16K). This interaction was first isolated in a yeast two-hybrid screen and confirmed by coimmunoprecipitation and in in vitro binding assays using bacterially expressed proteins. Immunofluorescent studies performed in L6 myoblasts expressing both native and epitope-tagged 16K demonstrate co-localization with beta(1) integrin in focal adhesions. Deletion of the fourth of four transmembrane helices in 16K results in loss of interaction with beta(1) integrin in vitro and in the two-hybrid system, and less prominent staining in focal adhesions. This helix is also required for ligand-independent activation of platelet-derived growth factor-beta receptor signaling by the human papillomavirus E5 oncoprotein. Overexpression of 16K or expression of 16K lacking this helix alters the morphology of myoblasts and fibroblasts, suggesting that the interaction of 16K with integrins could be important for cell growth control. We also discuss the possible role 16K might play in integrin movement.  相似文献   

3.
Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.  相似文献   

4.
Subunit composition of vacuolar membrane H(+)-ATPase from mung bean   总被引:11,自引:0,他引:11  
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.  相似文献   

5.
Interaction between the extracellular matrix and integrin receptors on cell surfaces leads not only to cell adhesion but also to intracellular signaling events that affect cell migration, proliferation, and survival. The vitronectin receptor alpha(v)beta(3) integrin is of key importance in glioma cell biology. The expression of urokinase-type plasminogen activator receptor (uPAR) was recently shown to co-regulate with the expression of alpha(v)beta(3) integrin. Moreover, restoration of the p16 protein in glioma cells inhibits the alpha(v)beta(3) integrin-mediated spreading of those cells on vitronectin. Thus we hypothesized that adenovirus-mediated down-regulation of uPAR and overexpression of p16 might down-regulate the expression of alpha(v)beta(3) integrin and the integrin-mediated signaling in glioma cells, thereby defeating the malignant phenotype. In this study, we used replication-deficient adenovirus vectors that contain either a uPAR antisense expression cassette (Ad-uPAR) or wild-type p16 cDNA (Ad-p16) and a bicistronic adenovirus construct in which both the uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16) are inserted in the E1-deleted region of the vector. Infecting the malignant glioma cell line SNB19 with Ad-uPAR, Ad-p16, or Ad-uPAR/p16 in the presence of vitronectin resulted in decreased alpha(v)beta(3) integrin expression and integrin-mediated biological effects, including adhesion, migration, proliferation, and survival Our results support the therapeutic potential of simultaneously targeting uPAR and p16 in the treatment of gliomas.  相似文献   

6.
It is known that the proper function of the vacuolar H(+)-ATPase is inhibited by bafilomycin A(1). In transfected cells the E5 protein interacts with the 16 kDa subunit of the vacuolar H(+)-ATPase. Thereby the pH gradient in endocytic structures is impaired. The present study demonstrates for the first time that the inhibition of the vacuolar H(+)-ATPase in NIH3T3 cells with bafilomycin A(1) or by transfection of cells with the HPV-16 E5 oncogene leads to a changed morphology and a reduced motility as shown by computer-assisted video recordings and image analysis. Bafilomycin A(1) potentiates the effect of the E5 protein on cell motility and this cooperative effect indicates that the E5 protein and bafilomycin A(1) either target the vacuolar H(+)-ATPase differently or that the E5 protein has additional targets in transfected cells. Our data therefore show that proper function of the vacuolar H(+)-ATPase is needed for normal cell locomotion.  相似文献   

7.
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.  相似文献   

8.
The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.  相似文献   

9.
Based on the following observations we propose that the cytoplasmic loop between trans-membrane segments M6 and M7 (L6/7) of the alpha subunit of Na(+),K(+)-ATPase acts as an entrance port for Na(+) and K(+) ions. 1) In defined conditions chymotrypsin specifically cleaves L6/7 in the M5/M6 fragment of 19-kDa membranes, produced by extensive proteolysis of Na(+),K(+)-ATPase, and in parallel inactivates Rb(+) occlusion. 2) Dissociation of the M5/M6 fragment from 19-kDa membranes is prevented either by occluded cations or by competitive antagonists such as Ca(2+), Mg(2+), La(3+), p-xylylene bisguanidinium and m-xylylene bisguanidinium, or 1-bromo-2,4, 6-tris(methylisothiouronium)benzene and 1,3-dibromo-2,4,6-tris (methylisothiouronium)benzene (Br(2)-TITU(3+)). 3) Ca(2+) ions raise electrophoretic mobility of the M5/M6 fragment but not that of the other fragments of the alpha subunit. It appears that negatively charged residues in L6/7 recognize either Na(+) or K(+) ions or the competitive cation antagonists. Na(+) and K(+) ions are then occluded within trans-membrane segments and can be transported, whereas the cation antagonists are not occluded and block transport at the entrance port. The cytoplasmic segment of the beta subunit appears to be close to or contributes to the entrance port, as inferred from the following observations. 1) Specific chymotryptic cleavage of the 16-kDa fragment of the beta subunit to 15-kDa at 20 degrees C (Shainskaya, A., and Karlish, S. J. D. (1996) J. Biol. Chem. 271, 10309-10316) markedly reduces affinity for Br(2)-TITU(3+) and for Na(+) ions, detected by Na(+) occlusion assays or electrogenic Na(+) binding, whereas Rb(+) occlusion is unchanged. 2) Na(+) ions specifically protect the 16-kDa fragment against this chymotryptic cleavage.  相似文献   

10.
Recent biochemical studies involving 2',7'-bis-(2-carboxyethyl)-5, 6-carboxylfluorescein (BCECF)-labeled saponin-permeabilized and parasitized erythrocytes indicated that malaria parasite cells maintain the resting cytoplasmic pH at about 7.3, and treatment with vacuolar proton-pump inhibitors reduces the resting pH to 6.7, suggesting proton extrusion from the parasite cells via vacuolar H(+)-ATPase (Saliba, K. J., and Kirk, K. (1999) J. Biol. Chem. 274, 33213-33219). In the present study, we investigated the localization of vacuolar H(+)-ATPase in Plasmodium falciparum cells infecting erythrocytes. Antibodies against vacuolar H(+)-ATPase subunit A and B specifically immunostained the infecting parasite cells and recognized a single 67- and 55-kDa polypeptide, respectively. Immunoelectron microscopy indicated that the immunological counterpart of V-ATPase subunits A and B is localized at the plasma membrane, small clear vesicles, and food vacuoles, a lower extent being detected at the parasitophorus vacuolar membrane of the parasite cells. We measured the cytoplasmic pH of both infected erythrocytes and invading malaria parasite cells by microfluorimetry using BCECF fluorescence. It was found that a restricted area of the erythrocyte cytoplasm near a parasite cell is slightly acidic, being about pH 6.9. The pH increased to pH 7.3 upon the addition of either concanamycin B or bafilomycin A(1), specific inhibitors of vacuolar H(+)-ATPase. Simultaneously, the cytoplasmic pH of the infecting parasite cell decreased from pH 7.3 to 7.1. Neither vanadate at 0.5 mm, an inhibitor of P-type H(+)-ATPase, nor ethylisopropylamiloride at 0.2 mm, an inhibitor of Na(+)/H(+)-exchanger, affected the cytoplasmic pH of erythrocytes or infecting parasite cells. These results constitute direct evidence that plasma membrane vacuolar H(+)-ATPase is responsible for active extrusion of protons from the parasite cells.  相似文献   

11.
To investigate the biogenesis of the yeast vacuole, we have sought novel marker proteins localized to the vacuolar membrane. Glycoproteins were prepared from vacuolar membrane vesicles by concanavalin A-Sepharose column chromatography and used to raise monoclonal antibodies. The antibodies obtained recognize several vacuolar proteins that have N-linked oligosaccharide chains. A set of the antibodies reacts with a vacuolar glycoprotein with a major molecular species of 72 kDa (vgp72), which appears to associate peripherally with the vacuolar membrane. The biosynthesis of vgp72 has been examined in detail by pulse-chase experiments and by analyses using various secretory mutants (sec18, sec7, and sec1) and a vacuolar protease mutant (pep4). vgp72 first appears in the endoplasmic reticulum as a 74-kDa species and is quickly modified in the Golgi apparatus to two distinct species: a 79-kDa form, and a heterogeneously glycosylated form (90-150 kDa). Subsequently, both species are proteolytically processed in the vacuole giving rise to a 72-kDa species as well as heavily glycosylated form. Thus, the biogenesis of vgp72 utilizes the early part of the secretory pathway as is the case of vacuolar soluble enzymes. A unique feature is that two species that are different in the extent of glycosylation appear to follow the same destination to the vacuolar membrane.  相似文献   

12.
Protein kinase C (PKC) has been implicated in integrin-mediated spreading and migration. In mammary epithelial cells there is a partial co-localization between beta1 integrin and PKCalpha. This reflects complexes between these proteins as demonstrated by fluorescense resonance energy transfer (FRET) monitored by fluorescence lifetime imaging microscopy and also by coprecipitation. Constitutive complexes are observed for the intact PKCalpha and also form with the regulatory domain in an activation-dependent manner. Expression of PKCalpha causes upregulation of beta1 integrin on the cell surface, whereas stimulation of PKC induces internalization of beta1 integrin. The integrin initially traffics to an endosomal compartment in a Ca(2+)/PI 3-kinase/dynamin I-dependent manner and subsequently enters an endocytic recycling pathway. This induction of endocytosis by PKCalpha is a function of activity and is not observed for the regulatory domain. PKCalpha, but not PKCalpha regulatory domain expression stimulates migration on beta1 integrin substrates. This PKCalpha-enhanced migratory response is inhibited by blockade of endocytosis.  相似文献   

13.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

14.
In mammals, beta1 integrin adhesion receptors generate signals that mediate cell spreading, migration, proliferation, and survival. CD98, a heterodimeric transmembrane protein, physically associates with certain integrin beta subunit cytoplasmic domains (tails) via its heavy chain, CD98hc (SLC3A2), and loss of CD98hc impairs integrin signaling. Here we have used the lack of CD98hc interaction with the Drosophila integrin betaPS tail for a homology scanning analysis that implicated the C-terminal 8 residues of beta3 (Thr(755)-Thr(802)) in CD98hc binding. We then identified point mutations in the beta3 C terminus (T755K and T758M) that abolish CD98hc association and a double mutation in the corresponding residues in the betaPS tail (K839T,M842T), which resulted in gain of CD98hc interaction. Furthermore, the loss of function beta3(T755K) mutation or the gain of function beta3/betaPS(K839T,M842T) led to a loss or gain of integrin-mediated cell spreading, respectively. Thus, we have identified critical integrin residues required for CD98hc interaction and in doing so have shown that CD98c interaction with the integrin beta tail is required for its ability to mediate integrin signaling. These studies also provide new insights into how CD98hc may cooperate with other cytoplasmic domain binding proteins to modulate integrin functions and into the evolution of integrin signaling.  相似文献   

15.
Previous purification and characterization of the yeast vacuolar proton-translocating ATPase (H(+)-ATPase) have indicated that it is a multisubunit complex consisting of both integral and peripheral membrane subunits (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095; Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989) J. Biol. Chem. 264, 19236-19244). We have obtained monoclonal antibodies recognizing the 42- and 100-kDa polypeptides that were co-purified with vacuolar ATPase activity. Using these antibodies we provide further evidence that the 42-kDa polypeptide, a peripheral membrane protein, and the 100-kDa polypeptide, an integral membrane protein, are genuine subunits of the yeast vacuolar H(+)-ATPase. The synthesis, assembly, and targeting of three of the peripheral subunits (the 69-, 60-, and 42-kDa subunits) and two of the integral membrane subunits (the 100- and 17-kDa subunits) were examined in mutant yeast cells containing chromosomal deletions in the TFP1, VAT2, or VMA3 genes, which encode the 69-, 60-, and 17-kDa subunits, respectively. The steady-state levels of the various subunits in whole cell lysates and purified vacuolar membranes were assessed by Western blotting, and the intracellular localization of the 60- and 100-kDa subunits was also examined by immunofluorescence microscopy. The results suggest that the assembly and/or the vacuolar targeting of the peripheral subunits of the yeast vacuolar H(+)-ATPase depend on the presence of all three of the 69-, 60-, and 17-kDa subunits. The 100-kDa subunit can be transported to the vacuole independently of the peripheral membrane subunits as long as the 17-kDa subunit is present; but in the absence of the 17-kDa subunit, the 100-kDa subunit appears to be both unstable and incompetent for transport to the vacuole.  相似文献   

16.
Tetraspanins associate on the cell membrane with several transmembrane proteins, including members of the integrin superfamily. The tetraspanin CD9 has been implicated in cell motility, metastasis, and sperm-egg fusion. In this study we characterize the first CD9 conformation-dependent epitope (detected by monoclonal antibody (mAb) PAINS-13) whose expression depends on changes in the activation state of associated beta(1) integrins. MAb PAINS-13 precipitates CD9 under conditions that preserve the association of this tetraspanin with integrins, but not under conditions that disrupt these interactions. Induction of activation of beta(1) integrins by temperature, divalent cation Mn(2+), or mAb TS2/16 correlated with enhanced expression of the PAINS-13 epitope on a variety of cells. Through the use of different K562 myeloid leukemia transfectant cells expressing specific members of the beta(1) integrin subfamily we show that the expression of the PAINS-13 epitope depends on CD9 association with alpha(6)beta(1) integrin. The mAb PAINS-13 reactivity has been mapped to the CD9 region comprising residues 112-154 in the NH(2) half of the large extracellular loop. Also, we show that the CD9 conformation recognized by mAb PAINS-13 is functionally relevant in beta(1) integrin-mediated cellular processes including wound healing migration, tubular morphogenesis, cell adhesion and spreading and in signal transduction involving phosphatidylinositol 3-kinase activation.  相似文献   

17.
Several major proteins of synaptic vesicles from rat or cow brain sediment as a large complex on sucrose density gradients when solubilized in nonionic detergents. A vacuolar H(+)-ATPase identified by sensitivity to bafilomycin A1 appears to be associated with this oligomeric protein complex. Two subunits of this complex, synaptic vesicle proteins S and U, correspond to the 57-kDa (B) and 39-kDa accessory (Ac39) subunits, respectively, of bovine chromaffin granule vacuolar H(+)-ATPase as shown by Western immunoblot analysis. The five subunits of the oligomeric complex constitute approximately 20% of the total protein of rat brain synaptic vesicles. Taken together, these results strongly suggest that the abundant, multisubunit complex partially purified from brain synaptic vesicles by density gradient centrifugation is a vacuolar H(+)-ATPase. Bafilomycin A1 completely blocks proton pumping in rat brain synaptic vesicles as measured by [14C]methylamine uptake and also blocks catecholamine accumulation measured by [3H]dopamine uptake. Moreover, ATPase activity, [14C]methylamine uptake, and [3H]dopamine uptake are inhibited by bafilomycin A1 at similar I50 values of approximately 1.7 nmol/mg of protein. These findings indicate that the vacuolar H(+)-ATPase is essential for proton pumping as well as catecholamine uptake by mammalian synaptic vesicles.  相似文献   

18.
《The Journal of cell biology》1994,126(5):1287-1298
The ability of single subunit chimeric receptors containing various integrin beta intracellular domains to mimic and/or inhibit endogenous integrin function was examined. Chimeric receptors consisting of the extracellular and transmembrane domains of the small subunit of the human interleukin-2 receptor connected to either the beta 1, beta 3, beta 3B, or beta 5 intracellular domain were transiently expressed in normal human fibroblasts. When expressed at relatively low levels, the beta 3 and beta 5 chimeras mimicked endogenous ligand-occupied integrins and, like the beta 1 chimera (LaFlamme, S. E., S. K. Akiyama, and K. M. Yamada. 1992. J. Cell Biol. 117:437), concentrated with endogenous integrins in focal adhesions and sites of fibronectin fibril formation. In contrast, the chimeric receptor containing the beta 3B intracellular domain (a beta 3 intracellular domain modified by alternative splicing) was expressed diffusely on the cell surface, indicating that alternative splicing can regulate integrin receptor distribution by an intracellular mechanism. Furthermore, when expressed at higher levels, the beta 1 and beta 3 chimeric receptors functioned as dominant negative mutants and inhibited endogenous integrin function in localization to fibronectin fibrils, fibronectin matrix assembly, cell spreading, and cell migration. The beta 5 chimera was a less effective inhibitor, and the beta 3B chimera and the reporter lacking an intracellular domain did not inhibit endogenous integrin function. Comparison of the relative levels of expression of the transfected beta 1 chimera and the endogenous beta 1 subunit indicated that in 10 to 15 h assays, the beta 1 chimera can inhibit cell spreading when expressed at levels approximately equal to the endogenous beta 1 subunit. Levels of chimeric receptor expression that inhibited cell spreading also inhibited cell migration, whereas lower levels were able to inhibit alpha 5 beta 1 localization to fibrils and matrix assembly. Our results indicate that single subunit chimeric integrins can mimic and/or inhibit endogenous integrin receptor function, presumably by interacting with cytoplasmic components critical for endogenous integrin function. Our results also demonstrate that beta intracellular domains, expressed in this context, display specificity in their abilities to mimic and inhibit endogenous integrin function. Furthermore, the approach that we have used permits the analysis of intracellular domain function in the processes of cell spreading, migration and extracellular matrix assembly independent of effects due to the rest of integrin dimers. This approach should prove valuable in the further analysis of integrin intracellular domain function in these and other integrin-mediated processes requiring the interaction of integrins with cytoplasmic components.  相似文献   

19.
Skelemin is a large cytoskeletal protein critical for cell morphology. Previous studies have suggested that its two-tandem immunoglobulin C2-like repeats (SkIgC4 and SkIgC5) are involved in binding to integrin beta3 cytoplasmic tail (CT), providing a mechanism for skelemin to regulate integrin-mediated signaling and cell spreading. Using NMR spectroscopy, we have studied the molecular details of the skelemin IgC45 interaction with the cytoplasmic face of integrin alphaIIbbeta3. Here, we show that skelemin IgC45 domains form a complex not only with integrin beta3 CT but also, surprisingly, with the integrin alphaIIb CT. Chemical shift mapping experiments demonstrate that both membrane-proximal regions of alphaIIb and beta3 CTs are involved in binding to skelemin. NMR structural determinations, combined with homology modeling, revealed that SkIgC4 and SkIgC5 both exhibited a conserved Ig-fold and both repeats were required for effective binding to and attenuation of alphaIIbbeta3 cytoplasmic complex. These data provide the first molecular insight into how skelemin may interact with integrins and regulate integrin-mediated signaling and cell spreading.  相似文献   

20.
A single gene, VMA1, encodes the 69-kDa subunit of the vacuolar membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. We have proposed that the subunit is synthesized as a precursor of 120 kDa (1,071 amino acids) and then converted to the 69-kDa form by an unusual processing reaction, which removes the internal domain of 454 amino acids (residues 284-737) and joins the N- and C-terminal domains. Cysteine to serine mutations at residues 284 and 738, the residues that bracket the internal domain, were introduced into the VMA1 gene by site-directed mutagenesis, and the mutant genes were expressed in a null vma1 mutant. Cells harboring either of the mutant vma1 genes accumulate nonfunctional fragments of the subunit. The mutation of Cys-284 inhibited the cleavage of the N-terminal junction site. Cys-738-->Ser mutation appeared to block the processing at both junction sites although the mutant gene yielded a small fraction of the functional 69-kDa subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号