共查询到20条相似文献,搜索用时 0 毫秒
1.
Contour-clamped homogeneous electric field gel analysis of genomic DNA of the plant pathogen Clavibacter michiganensis subsp. sepedonicus revealed the presence of a previously unreported extrachromosomal element. This new element was demonstrated to be a linear plasmid. Of 11 strains evaluated, all contained either a 90-kb (pCSL1) or a 140-kb (pCSL2) linear plasmid. 相似文献
2.
I. V. Safenkova I. A. Zaitsev G. K. Pankratova Yu. A. Varitsev A. V. Zherdev B. B. Dzantiev 《Applied Biochemistry and Microbiology》2014,50(6):675-682
A lateral flow immunoassay for the rapid detection of Clavibacter michiganensis subsp. sepedonicus bacteria causing potato ring rot was developed. Multimembrane composites (test strips) containing polyclonal antibodies against the bacteria and gold nanoparticle-antibody conjugates were used for the analysis. The test strips are suitable for the analysis of potato tuber and leaf extracts within 10 min; the detection limit of bacteria is 4 × 105 cells/mL. No cross-reactivity with strains of Clavibacter michiganensis subsp. michiganensis, Pectobacterium carotovorum subsp. carotovorum and saprophytes of healthy potato plants was detected. The results of analysis of 26 potato samples by the developed tests were compared with those obtained by the PCR method and using the commercial enzyme immunoassay kits. The results of lateral flow immunoassay were confirmed in 96.2% of cases, which supports the high correlation with other analytical approaches. The developed immunoassay may be considered as a promising means of phytosanitary control. 相似文献
3.
Matthew A. Tancos Laura Chalupowicz Isaac Barash Shulamit Manulis-Sasson Christine D. Smart 《Applied and environmental microbiology》2013,79(22):6948-6957
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes. 相似文献
4.
Stable transformation of the gram-positive phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus with several cloning vectors.
下载免费PDF全文

M J Laine H Nakhei J Dreier K Lehtil D Meletzus R Eichenlaub M C Metzler 《Applied microbiology》1996,62(5):1500-1506
In this paper we describe transformation of Clavibacter michiganensis subsp. sepedonicus, the potato ring rot bacterium, with plasmid vectors. Three of the plasmids used, pDM100, pDM302, and pDM306, contain the origin of replication from pCM1, a native plasmid of C. michiganensis subsp. michiganensis. We constructed two new cloning vectors, pHN205 and pHN216, by using the origin of replication of pCM2, another native plasmid of C. michiganensis subsp. michiganensis. Plasmids pDM302, pHN205, and pHN216 were stably maintained without antibiotic selection in various strains of C. michiganensis subsp. sepedonicus. We observed that for a single plasmid, different strains of C. michiganensis subsp. sepedonicus showed significantly different transformation efficiencies. We also found unexplained strain-to-strain differences in stability with various plasmid constructions containing different arrangements of antibiotic resistance genes and origins of replication. We examined the effect of a number of factors on transformation efficiency. The best transformation efficiencies were obtained when C. michiganensis subsp. sepedonicus cells were grown on DM agar plates, harvested during the early exponential growth phase, and used fresh (without freezing) for electroporation. The maximal transformation efficiency obtained was 4.6 x 10(4) CFU/microgram of pHN216 plasmid DNA. To demonstrate the utility of this transformation system, we cloned a beta-1,4-endoglucanase-encoding gene from C. michiganensis subsp. sepedonicus into pHN216. When this construction, pHN216:C8, was electroporated into competent cells of a cellulase-deficient mutant, it restored cellulase production to almost wild-type levels. 相似文献
5.
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for
virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative
expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative
real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection
of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence
difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be
involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity. 相似文献
6.
Tomato plants pre-inoculated with the avirulent strain NCPPB 3123 of Clavibacter michiganensis subsp. michiganensis (Cmm) were protected largely against challenge infection by virulent strains of Cmm. Effectiveness of this protective effect was mainly dependent on the inoculation sites, the bacterial cell concentration used for pre- and challenge inoculations, and the time interval between both inoculations. This defence reaction was systemic and stable throughout the whole growing season. Resistance can also be induced by pre-inoculation of heat-killed bacteria or application of isolated EPS of the strain 3123. Strain 3123 spreads out in tomato plants in the same manner as virulent Cmm isolates, but its colonization of tomato fruits and seeds was substantially lower. Papillary to spherical electron dense particles were observed at the tonoplast in parenchyma cells of the vascular system of tomato plants inoculated with the strain 3123. Numerous investigations carried out to examine the ability of 3123 to induce resistance in other host/pathogen-systems showed that it was only specific for tomato/Cmm. 相似文献
7.
Repetitive-sequence-based polymerase chain reaction (Rep-PCR) method was used for analysis of genetic variability among bacterial
populations from different world locations. Collection of 26 Czech and 13 foreign strains ofClavibacter michiganensis subsp.sepedonicus was amplified using BOX primer targeting to repetitive motif occurring in eubacterial genomes. Genetic fingerprints were
visually compared and statistically evaluated by cluster analysis. Genetic similarity was estimated to be approximately 80%
among all tested strains. Populations of these bacteria seem to be highly homogeneous; potential influence of geographic origin
was not confirmed. 相似文献
8.
Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus. 总被引:1,自引:0,他引:1
下载免费PDF全文

Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus. 相似文献
9.
Twelve phytopathogenic Clavibacter michiganensis subsp. michiganensis strains were introduced into non-sterile agricultural loam soil at an inoculum density of about log. 6.0 cfu g–1 dry weight soil. The soil samples were incubated at 22°C under a 12h light, 12h dark cycle and the population densities followed over a 30-day period by plating subsamples of serial dilutions of soil on Brain Heart Infusion agar amended with 0.5% (w/v) yeast extract and 30 g mL–1 nalidixic acid. In 5 soil samples C. michiganensis cfu were not detected after 30 days incubation. Initially, C. michiganensis cfu accounted for about 90% of the cfu recovered but decreased to less than 10% after 30 days. These results suggested that some C. michiganensis strains survive in this particular soil, while other strains exhibit poor survival and/or may be difficult to detect when present in low numbers. 相似文献
10.
Zhanliang Liu Ping Ma Ingrid Holtsmark Morten Skaugen Vincent G. H. Eijsink May B. Brurberg 《Applied and environmental microbiology》2013,79(18):5721-5727
It has previously been shown that the tomato pathogen Clavibacter michiganensis subsp. michiganensis secretes a 14-kDa protein, C. michiganensis subsp. michiganensis AMP-I (CmmAMP-I), that inhibits growth of Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot of potato. Using sequences obtained from tryptic fragments, we have identified the gene encoding CmmAMP-I and we have recombinantly produced the protein with an N-terminal intein tag. The gene sequence showed that CmmAMP-I contains a typical N-terminal signal peptide for Sec-dependent secretion. The recombinant protein was highly active, with 50% growth inhibition (IC50) of approximately 10 pmol, but was not toxic to potato leaves or tubers. CmmAMP-I does not resemble any known protein and thus represents a completely new type of bacteriocin. Due to its high antimicrobial activity and its very narrow inhibitory spectrum, CmmAMP-1 may be of interest in combating potato ring rot disease. 相似文献
11.
Ralstonia solanacerum and Clavibacter michiganensis subsp. sepedonicus are the two most relevant bacterial pathogens of potato for which a large number of molecular diagnostic methods using specific DNA sequences have been developed. About one hundred oligonucleotides have been described and thoroughly tested experimentally. After having compiled and evaluated all these primers and probes in silico to check their specificity, many discrepancies were found. A detailed analysis permitted the recognition of different possible reasons for such discrepancies: sequencing errors in public sequences, wrong supposed specificity (sometimes due to more recent sequences than the oligonucleotides being evaluated) or even typing errors in the oligonucleotides. Although this study is an exercise about in silico evaluation using two potato bacterial pathogens as a model, the conclusions reflect not only information useful for phytopathologists but, in a broader scope, draw the main situations that can be found during an evaluation of probes, which can be surely found in other scenarios. 相似文献
12.
The use of pathogen-free plant material is the main strategy for controlling bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. However, detection and isolation of this pathogen from seeds before field or greenhouse cultivation is difficult when the bacterium is at low concentration and associated microbiota are present. Immunomagnetic separation (IMS), based on the use of immunomagnetic beads (IMBs) coated with specific antibodies, was used to capture C. michiganensis subsp. michiganensis cells, allowing removal of non-target bacteria from samples before plating on non-selective medium. Different concentrations of IMBs and of two antisera were tested, showing that IMS with 10(6)IMBs/ml coated with a polyclonal antiserum at 1/3200 dilution recovered more than 50% of target cells from initial inocula of 10(3) to 10(0)CFU/ml. Threshold detection was lower than 10CFU/ml even in seed extracts containing seed debris and high populations of non-target bacteria. The IMS permitted C. michiganensis subsp. michiganensis isolation from naturally infected seeds with higher sensitivity and faster than direct isolation on the semiselective medium currently used and could become a simple viable system for routinely testing tomato seed lots in phytosanitary diagnostic laboratories. 相似文献
13.
Genome-wide expression profiles of the phytopathogenic actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) strain NCPPB382 were analyzed using a 70mer oligonucleotide microarray. Cmm causes bacterial wilt and canker of tomato, a systemic disease leading to substantial economic losses worldwide. Global gene expression was monitored in vitro after long- and short-term incubation with tomato homogenate to simulate conditions in planta and in vivo ten days after inoculation of tomatoes. Surprisingly, both in the presence of tomato homogenate and in planta known virulence genes (celA, chpC, ppaA/C) were down-regulated indicating that the encoded extracellular enzymes are dispensable in late infection stages where plant tissue has already been heavily destroyed. In contrast, some genes of the tomA-region which are involved in sugar metabolism showed an enhanced RNA-level after permanent growth in supplemented medium. Therefore, these genes may be important for utilization of plant derived nutrients. In the plant Cmm exhibited an expression profile completely different from that in vitro. Especially, the strong expression of genes of the wco-cluster (extracellular polysaccharide II), 10 genes encoding surface or pilus assembly proteins, and CMM_2382, coding for a putative perforin suggest a possible role of these genes in the plant-pathogenic interaction. 相似文献
14.
AIMS: To develop a procedure for direct detection of viable cells of Clavibacter michiganensis subsp. sepedonicus (Cms), the causal organism of bacterial ring rot in potato, based on AmpliDet RNA, in which amplicons generated by nucleic acid sequence based amplification (NASBA) are monitored in real time with a molecular beacon. METHODS AND RESULTS: Five methods were evaluated and fine-tuned for extraction of RNA from Cms. The most efficient non-commercial RNA extraction method included an enzymatic breakdown of the cell wall followed by a phenol extraction. AmpliDet RNA enabled detection of 10,000 molecules of purified rRNA per reaction and 100 cfu of Cms per reaction in more complex samples. Two primer pairs were tested with DNA and RNA purified from Cms. One primer pair was able to distinguish live from dead cells. CONCLUSIONS: An AmpliDet RNA was developed which enabled fast and specific detection of viable cells of Cms in complex substrates at a detection limit of 100 cfu per reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: This novel AmpliDet RNA is carried out in sealed tubes, thus reducing the risk of carry-over contamination. The method will be particularly suitable for studies on the epidemiology of Cms in which viable cells should be exclusively detected. 相似文献
15.
Clavibacter michiganensis subsp. nebraskensis (CMN) is a gram-positive bacterium and an incitant of Goss's bacterial wilt and leaf blight or "leaf freckles" in corn. A population structure of a wide temporal and geographic collection of CMN strains (n = 131), originating between 1969 and 2009, was determined using amplified fragment length polymorphism (AFLP) analysis and repetitive DNA sequence-based BOX-PCR. Analysis of the composite data set of AFLP and BOX-PCR fingerprints revealed two groups with a 60% cutoff similarity: a major group A (n = 118 strains) and a minor group B (n = 13 strains). The clustering in both groups was not correlated with strain pathogenicity. Group A contained two clusters, A1 (n = 78) and A2 (n = 40), with a linkage of 75%. Group A strains did not show any correlation with historical, geographical, morphological, or physiological properties of the strains. Group B was very heterogeneous and eight out of nine clusters were represented by a single strain. The mean similarity between clusters in group B varied from 13% to 63%. All strains in group B were isolated after 1999. The percentage of group B strains among all strains isolated after 1999 (n = 69) was 18.8%. Implications of the findings are discussed. 相似文献
16.
Gene Expression Analysis during Interaction of Tomato and Related Wild Species with Clavibacter michiganensis subsp. michiganensis 总被引:1,自引:0,他引:1
José Pablo Lara-Ávila María Isabel Isordia-Jasso Rosalba Castillo-Collazo June Simpson Ángel Gabriel Alpuche-Solís 《Plant Molecular Biology Reporter》2012,30(2):498-511
17.
The viability of Clavibacter michiganensis subsp. michiganensis (Cmm) was determined by measuring the intracellular pH (pHin) as a viability parameter. This was based on the observation that growth of Cmm was inhibited at pH 5.5 and below. Therefore, viable cells should maintain their pHin above this pH value. The pHin of Cmm was determined using the fluorescent probe 5(and 6-)-carboxyfluorescein succinimidyl ester (cFSE). The pHin of Cmm cells exposed to acid treatments was determined using fluorescence spectrofluorometry, and for cells exposed to elevated temperatures, the pHin was determined using fluorescence spectrofluorometry and flow cytometry (FCM). A good correlation was found between the presence of a pH gradient and the number of colony-forming units (cfu) observed in plate counts. However, with the spectrofluorometry technique, the analysis is based on the whole cell population and the detection sensitivity of this technique is rather low, i.e., cell numbers of at least 107 cfu ml-1 are needed for the analysis. Using FCM, heat-treated and non-treated Cmm cells could be distinguished based on the absence and presence of a pH gradient, respectively. The major advantage of FCM is its high sensitivity, allowing analysis of microbial populations even at low numbers, i.e., 102-103 cfu ml-1. 相似文献
18.
Gartemann KH Kirchner O Engemann J Gräfen I Eichenlaub R Burger A 《Journal of biotechnology》2003,106(2-3):179-191
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible. 相似文献
19.
Gartemann KH Abt B Bekel T Burger A Engemann J Flügel M Gaigalat L Goesmann A Gräfen I Kalinowski J Kaup O Kirchner O Krause L Linke B McHardy A Meyer F Pohle S Rückert C Schneiker S Zellermann EM Pühler A Eichenlaub R Kaiser O Bartels D 《Journal of bacteriology》2008,190(6):2138-2149
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. 相似文献