首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
依据一近完整的相关节的骨骼化石,记述了辽宁建昌早白垩世九佛堂组原始今鸟类一新属种:小齿建昌鸟(Jianchangornis microdonta gen.et sp.nov.)。新鸟个体较大,但从骨化程度分析,正型标本可能属于一亚成年个体。具有一些进步特征,如胸骨及龙骨突加长,乌喙骨具有发育的前乌喙突以及和肩胛骨关联的关节窝,叉骨"U"字型,愈合荐椎包括9-10枚荐椎,尾综骨短小,第二、三掌骨远端愈合,跗跖骨完全愈合等,表明新属无疑属于今鸟类。在以下特征组合上很容易和已知的早白垩世今鸟类化石相区别:齿骨上至少有16枚细小牙齿,从齿骨前端向后沿齿骨大部密集排列;肩胛骨强烈弯曲;第一掌骨粗壮,较其他掌骨宽;第一指长并且远端延伸明显超过第二掌骨;肱骨+尺骨+第二掌骨与股骨+胫跗骨+跗跖骨的长度比例约为1.1。系统发育分析表明新属属于基干的今鸟类。新发现的材料第二、三掌骨远端愈合很好,但近端却未完全愈合,这一特征尚未见于其他已知鸟类,或许表明今鸟类腕掌骨的愈合和现生鸟类的跗跖骨一样是从远端开始的,不同于反鸟类和其他基干鸟类。建昌鸟的下颌还保存了一个前齿骨,这是继早白垩世红山鸟之后的另一例报道,可能进一步表明这一结构在今鸟类中曾普遍出现。新鸟肩带、胸骨和前肢的特征显示了和现代鸟类相近的飞行能力,其后肢、脚趾的比例以及趾爪的形态等显示和燕鸟、义县鸟等相似的地栖特征。保存于标本上的鱼类残骸可能显示了建昌鸟食鱼类的习性。今鸟类新属种的发现进一步表明,早白垩世这一进步鸟类类群的分化已不亚于反鸟类,湖滨环境在今鸟类的早期演化中确实扮演了重要的角色。  相似文献   

2.
A synoptic review of the discoveries and studies of Chinese Mesozoic birds is provided in this paper. 40Ar/39Ar dating of several bird-bearing deposits in the Jehol Group has established a geochronological framework for the study of the early avian radiation. Chinese Mesozoic birds had lasted for at least 11 Ma during about 131 Ma and 120 Ma (Barremian to Aptian) of the middle and late Early Cretaceous, respectively. In order to further evaluate the change of the avian diversity in the Jehol Biota, six new orders and families are erected based on known genera and species, which brings the total number of orders of Chinese Mesozoic birds to 15 and highlights a remarkable radiation ever since the first appearance of birds in the Late Jurassic. Chinese Early Cretaceous birds had experienced a significant differentiation in morphology, flight, diet and habitat. Further examination of the foot of Jeholornis suggests this bird might not have possessed a fully reversed hallux. However, the attachment of metatarsal I to the medial side of metatarsal II does not preclude trunk climbing, a pre-adaptation for well developed perching life of early birds. Arboreality had proved to be a key adaptation in the origin and early evolution of bird flight, and the adaptation to lakeshore environment had played an equally important role in the origin of ornithurine birds and their near-modern flight skill. Many Chinese Early Cretaceous birds had preserved the direct evidence of their diet, showing that the most primitive birds were probably mainly insectivorous and that specialized herbivorous or carnivorous (e.g., piscivorous) dietary adaptation had appeared only in later advanced forms. The only known Early Cretaceous bird embryo fossil has shown that precocial birds had occurred prior to altricial birds in avian history, and the size of the embryo and other analysis indicate it probably had a short incubation period. Leg feathers probably have a wide range of distribution in early birds, further suggesting that leg feathers had played a key role in the beginning stage of the flight of birds. Finally, the Early Cretaceous avian radiation can be better understood against the background of their unique ecosystem. The advantage of birds in the competitions with other vertebrate groups such as pterosaurs had probably not only resulted in the rapid differentiation and radiation of birds but also the worldwide spreading of pterosaurs and other vertebrates from East Asia in the Early Cretaceous. Selected from Vertebrata PalAsiatica 2006, 44 (1): 74–98  相似文献   

3.
根据发现于辽宁西部建昌早白垩世九佛堂组一件保存较为完好的标本,描述了原始今鸟类一新属种,李氏叉尾鸟(Schizooura lii gen.et sp.nov.)。系统发育分析表明,它较建昌鸟和古喙鸟进步,但又较热河生物群中其他已知的今鸟类原始。这一新种叉骨呈Ⅴ型,且具有一短的叉骨突,这是这一特征首次在早白垩世今鸟中发现。其胸骨加长,后缘无窗孔,且无很深的凹口。肱骨三角肌脊膨大,近乎达到肱骨长的一半。新鸟的头骨保存较好,显示其具喙的特征,前颌骨直接与额骨相关节。值得关注的是,这件标本首次展示了在中生代鸟类中,除扇形尾羽之外的第二种尾羽类型。新标本具叉形尾羽,中间分隔明显。对现生鸟类的研究表明,叉尾型的空气动力学效率比扇尾型要低,但在性选择方面具有优势。这一新的发现说明,在热河生物群生活的森林环境中,今鸟类的基干种类在尾羽性状上或许已经存在着不同的选择策略。  相似文献   

4.
中国中生代的鸟类:介绍及综述   总被引:4,自引:0,他引:4  
周忠和  张福成 《动物学报》2004,50(6):913-920
最近十来年 ,中国辽宁发现的早白垩世的鸟类化石超过了世界上其它任何一个地区。中国的中生代鸟类化石代表了始祖鸟化石之后鸟类历史上第一次显著的分异。它们不仅包括了带有明显恐龙祖先特征的长尾的鸟类 ,而且还包括了许多进步或特化的种类 ,如早白垩世最大的鸟类 ,最原始的反鸟类 ,以及保存最好的、飞行结构和现生鸟类几乎一样的今鸟类。这些早期鸟类在诸如飞行、大小和食性等所反映的演化、形态和生态学特征等方面出现了重大的分异。具有长尾骨骼的原始基干鸟类热河鸟和驰龙类具有的相似性 ,进一步支持了鸟类起源于恐龙的学说。中国发现的早白垩世的鸟类以及树栖的恐龙化石还为鸟类飞行的树栖起源假说提供了十分重要的证据。“恐龙下树”的假说结合了鸟类起源于恐龙的学说和鸟类飞行的树栖起源学说 ,因此也得到了化石证据的支持。由于多种恐龙带有羽毛 ,因此羽毛不一定代表了恒温。恒温的鸟类可能到了早白垩世的进步鸟类中才开始出现  相似文献   

5.
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.  相似文献   

6.
7.
A synoptic review of the discoveries and studies of Chinese Mesozoic birds is provided in this paper.40Ar/39Ar dating of several bird-bearing deposits in the Jehol Group has established a geochronological framework for the study of the early avian radiation.Chinese Mesozoic birds had lasted for at least 11 Ma during about 131 Ma and 120 Ma (Barremian to Aptian)of the middle and late Early Cretaceous,respectively.In order to further evaluate the change of the avian diversity in the Jehol Biota,six new orders and families are erected based on known genera and species,which brings the total number of orders of Chinese Mesozoic birds to 15 and highlights a remarkable radiation ever since the first appearante of birds in the Late Jurassic.Chinese Early Cretaceous birds had experienced a significant differentiation in morphology,flight,diet and habitat.Further examination of the foot of Jeholornis suggests this bird might not have possessed a fully reversed hallux.However,the attachment of metatarsal Ⅰ to the medial side of metatarsal Ⅱ does not preclude trunk climbing,a pre-adaptation for well developed perching life of early birds.Arboreality had proved to be a key adaptation in the origin and early evolution of bird flight,and the adaptation to lakeshore environment had played an equally important role in the origin of omithurine birds and their near-modern flight skill.Many Chinese Early Cretaceous birds had preserved the direct evidence of their diet,showing that the most primitive birds were probably mainly insectivorous and that specialized herbivorous or carnivorous (e.g.,piscivorous)dietary adaptation had appeared only in later advanced forms.The only known Early Cretaceous bird embryo fossil has shown that precocial birds had occurred prior to altricial birds in avian history,and the size of the embryo and other analysis indicate it probably had a short incubation period.Leg feathers probably have a wide range of distribution in early birds,further suggesting that leg feathers had played a key role in the beginning stage of the flight of birds.Finally,the Early Cretaceous avian radiation can be better understood against the background of their unique ecosystem.The advantage of birds in the competitions with other vertebrate groups such as pterosaurs had probably not only resulted in the rapid differentiation and radiation of birds but also the worldwide spreading of pterosaurs and other vertebrates from East Asia in the Early Cretaceous.  相似文献   

8.
Two thin‐toed tridactyl tracks in a fluvial sandstone bed of the Eumeralla Formation (Albian) at Dinosaur Cove (Victoria, Australia) were likely made by avian trackmakers, making these the oldest known fossil bird tracks in Australia and the only Early Cretaceous ones from Gondwana. These tracks, which co‐occur on the same surface with a slightly larger nonavian theropod track, are distinguishable by their anisodactyl form, hallux impressions and wide digit II–IV divarication angles. A lengthy hallux impression and other deformational structures associated with one track indicate foot movement consistent with an abrupt stop, suggesting its tracemaker landed after either flight or a hop. The single nonavian theropod track is similar to other tracks described from the Eumeralla Formation at another locality. The avian footprints are larger than most Early Cretaceous avian tracks recorded worldwide, indicating sizeable enantiornithine or ornithurine species in formerly polar environments of Australia. The avian tracks further supplement scant body fossil evidence of Early Cretaceous birds in southern Australia, which includes a furcula from the Wonthaggi Formation. Because of this discovery, Dinosaur Cove, previously known for its vertebrate body fossils, is added to a growing list of Early Cretaceous vertebrate tracksites in southern Australia.  相似文献   

9.
Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain macroevolution.  相似文献   

10.
Material of the hypsilophodontid dinosaur Valdosauruscanaliculatus (Ornithischia: Ornithopoda) is described from the Lower Cretaceous (Barremian) of southern England and a new species is recognized from the Lower Cretaceous (Aptian) of Niger, West Africa. This occurrence of Valdosaurus in Europe and Africa provides evidence of a land connection between these continents across Tethys sometime in the early Cretaceous.  相似文献   

11.
Here, I present a review and synthesis of fossil and neontological evidence to find major trends in the pre-Cenozoic evolution of animal acoustic behaviour. Anatomical, ecological and phylogenetic data support the following scenario. Stridulating insects, including crickets, performed the first terrestrial twilight choruses during the Triassic. The twilight chorus was joined by water boatmen in the Lower Jurassic, anurans in the Upper Jurassic, geckoes and birds in the Lower Cretaceous, and cicadas and crocodilians in the Upper Cretaceous. Parallel evolution of defensive stridulation took place multiple times within Malacostraca, Arachnida and Coleoptera. Parallel evolution of defensive and courtship-related sound production took place in Actinopterygii, possibly as early as the Devonian. Defensive vocalisations by tetrapods probably did not appear until their predators acquired tympanic ears in the Permian. Tympanic ears appeared independently in Diadectomorpha, Seymouriamorpha, Parareptilia, Diapsida and derived Synapsida. Crocodilians and birds acquired vocal organs independently, and there is no anatomical evidence for vocal ability in bird-line archosaurs basal to the avian clade Ornithothoraces. Acoustic displays by non-avian dinosaurs were therefore probably non-vocal. Other aspects of the evolution of acoustic behaviour in these and other lineages are also discussed.  相似文献   

12.
A new avian genus and species, Zhongjianornis yangi gen. et sp. nov., is reported from the Lower Cretaceous lacustrine deposits of the Jiufotang Formation in Liaoning, northeast China. The new taxon is characterized by possessing the following combination of features: upper and lower jaws toothless, snout pointed, humerus with large and robust deltopectoral crest, second phalanx of the major manual digit longer than the first phalanx, unguals of the alular and major digits of similar length and significantly shorter than the corresponding penultimate phalanges, tibiotarsus slender and more than twice the length of the tarsometatarsus, and metatarsal IV longer than the other metatarsals. Phylogenetic analysis indicates that Zhongjianornis is phylogenetically basal to Confuciusornis and the dominant Mesozoic avian groups, Enantiornithes and Ornithurae, and therefore provides significant new information regarding the diversification of birds in the Early Cretaceous. It also represents the most basal bird that completely lacks teeth, suggesting that tooth loss was more common than expected in early avian evolution and that the avian beak appeared independently in several avian lineages, most probably as a response to selective pressure for weight reduction. Finally, the presence of a significantly enlarged humeral deltopectoral crest suggests that Zhongjianornis shares with other basal birds such as Jeholornis, Sapeornis and Confuciusornis a distinctive mode of adaptation for flight contrasting with that seen in more advanced birds, which instead possess an elongated sternum and a prominent keel.  相似文献   

13.
We describe a new enantiornithine bird, Parapengornis eurycaudatus gen. et sp. nov. from the Lower Cretaceous Jiufotang Formation of Liaoning, China. Although morphologically similar to previously described pengornithids Pengornis houi, Pengornis IVPP V18632, and Eopengornis martini, morphological differences indicate it represents a new taxon of the Pengornithidae. Based on new information from this specimen we reassign IVPP V18632 to Parapengornis sp. The well preserved pygostyle of the new specimen elucidates the morphology of this element for the clade, which is unique in pengornithids among Mesozoic birds. Similarities with modern scansores such as woodpeckers may indicate a specialized vertical climbing and clinging behavior that has not previously been inferred for early birds. The new specimen preserves a pair of fully pennaceous rachis-dominated feathers like those in the holotype of Eopengornis martini; together with the unique morphology of the pygostyle, this discovery lends evidence to early hypotheses that rachis-dominated feathers may have had a functional significance. This discovery adds to the diversity of ecological niches occupied by enantiornithines and if correct reveals are remarkable amount of locomotive differentiation among Enantiornithes.  相似文献   

14.
段冶  程绍利 《古生物学报》2006,45(3):393-398
描述的昆虫化石产自辽西朝阳县大平房乡原家洼九佛堂组。该化石为一新种,命名为原家洼始长腹细蜂(Eopelecinusyuanjiawaensissp.nov.),归入长腹细蜂科(Pelecinidae)。该科是昆虫纲膜翅目中一个现生小科,仅包括1属3种,分布在美洲大陆。该科在白垩纪曾广泛分布于欧亚大陆,在我国曾发现于辽西的义县组和山东的莱阳组中。  相似文献   

15.
We describe a new species of psittacosaur, Psittacosaurus gobiensis, from the Lower Cretaceous of Inner Mongolia and outline a hypothesis of chewing function in psittacosaurs that in many respects parallels that in psittaciform birds. Cranial features that accommodate increased bite force in psittacosaurs include an akinetic skull (both cranium and lower jaws) and differentiation of adductor muscle attachments comparable to that in psittaciform birds. These and other features, along with the presence of numerous large gastroliths, suggest that psittacosaurs may have had a high-fibre, nucivorous (nut-eating) diet.Psittacosaurs, alone among ornithischians, generate oblique wear facets from tooth-to-tooth occlusion without kinesis in either the upper or lower jaws. This is accomplished with a novel isognathous jaw mechanism that combines aspects of arcilineal (vertical) and propalinal (horizontal) jaw movement. Here termed clinolineal (inclined) jaw movement, the mechanism uses posteriorly divergent tooth rows, rather than kinesis, to gain the added width for oblique occlusion. As the lower tooth rows are drawn posterodorsally into occlusion, the increasing width between the upper tooth rows accommodates oblique shear. With this jaw mechanism, psittacosaurs were able to maintain oblique shearing occlusion in an akinetic skull designed to resist high bite forces.  相似文献   

16.
Some birds intentionally ingest stones to facilitate digestion of hard foodstuffs, a behaviour inherited from non-avian dinosaurs and present in some of the earliest birds, as evidenced by clusters of gastroliths preserved within the abdominal cavity of a wide range of dinosaurs and Cretaceous birds. For the first time, high-resolution computed laminographic and computed tomographic scans were used to reconstruct the gastral mass in two species of non-neornithine ornithuromorph birds from the Lower Cretaceous Jehol Group. Four specimens of each taxon were analysed. Preservation of the gastral mass in most of these specimens is in situ and regarded as complete or nearly so. The number of gastroliths, their total volume, and their total mass relative to the estimated body mass were calculated for each specimen. The resultant gastral mass to body mass ratios fall within the range observed in extant birds, supporting previous inferences that the digestive system in non-neornithine ornithuromorphs was comparable to that of extant taxa. Compared to available data for non-volant non-avian theropods, the gastral mass is proportionately smaller in birds suggesting that the evolution of flight constrained gastral mass size in the theropod lineage. Currently available data on gastral mass characteristics suggests that Iteravis ate larger food particles compared to Archaeorhynchus but cannot be used to determine diet more precisely. Better understanding of the relationship between gastral mass characteristics and food items across a broader range of extant taxa may provide an indirect but important method through which to infer diet and digestive function in archosaurs.  相似文献   

17.
Abstract: We revisit a small but extremely significant collection of bird and pterosaur bones from the Lower Cretaceous (Berriasian) of western Romania. These fossils were collected in the late 1970s and early 1980s from a Lower Cretaceous (Berriasian) conglomerate lens deep in a bauxite mine at Cornet, close to the city of Oradea, Romania, and they caused a sensation when first described. Some fossils were initially ascribed to the early bird genus Archaeopteryx as well as to the modern clade Neornithes, an astonishing avian assemblage if correct. Described pterosaurs include dsungaripterids and a cervical vertebra that is likely the oldest azhdarchid pterosaur known from Europe and perhaps the world. Not only does the Cornet azhdarchid support an Eurasian origin for this clade, it is also significant because of its size: it is one of the smallest representatives of this pterosaur clade yet reported. Aside from their phylogenetic affinities, these unique Romanian fossils are also important because of their age; in particular, very few birds are known globally from the earliest Cretaceous. Re‐examination of collections in Oradea confirms the presence of both birds and pterosaurs in the Cornet bauxite: although the fragmentary bird remains are mostly indeterminate, one record of a hesperornithiform is confirmed. There is no evidence for Archaeopteryx at the Cornet site while the two supposed neornithines (Palaeocursornis biharicus Kessler and Jurcsák and Eurolimnornis corneti Kessler and Jurcsák) are based on undiagnostic remains and are here regarded as nomina dubia.  相似文献   

18.
Avian and mammalian endothermy results from elevated rates of resting, or routine, metabolism and enables these animals to maintain high and stable body temperatures in the face of variable ambient temperatures. Endothermy is also associated with enhanced stamina and elevated capacity for aerobic metabolism during periods of prolonged activity. These attributes of birds and mammals have greatly contributed to their widespread distribution and ecological success. Unfortunately, since few anatomical/physiological attributes linked to endothermy are preserved in fossils, the origin of endothermy among the ancestors of mammals and birds has long remained obscure. Two recent approaches provide new insight into the metabolic physiology of extinct forms. One addresses chronic (resting) metabolic rates and emphasizes the presence of nasal respiratory turbinates in virtually all extant endotherms. These structures are associated with recovery of respiratory heat and moisture in animals with high resting metabolic rates. The fossil record of nonmammalian synapsids suggests that at least two Late Permian lineages possessed incipient respiratory turbinates. In contrast, these structures appear to have been absent in dinosaurs and nonornithurine birds. Instead, nasal morphology suggests that in the avian lineage, respiratory turbinates first appeared in Cretaceous ornithurines. The other approach addresses the capacity for maximal aerobic activity and examines lung structure and ventilatory mechanisms. There is no positive evidence to support the reconstruction of a derived, avian-like parabronchial lung/air sac system in dinosaurs or nonornithurine birds. Dinosaur lungs were likely heterogenous, multicameral septate lungs with conventional, tidal ventilation, although evidence from some theropods suggests that at least this group may have had a hepatic piston mechanism of supplementary lung ventilation. This suggests that dinosaurs and nonornithurine birds generally lacked the capacity for high, avian-like levels of sustained activity, although the aerobic capacity of theropods may have exceeded that of extant ectotherms. The avian parabronchial lung/air sac system appears to be an attribute limited to ornithurine birds.  相似文献   

19.
Tibiotarsi ofDsungaripterus?brancai (Reck) (Upper Jurassic, East Africa),D. weii Young (Lower Cretaceous, China) andPuntanipterus globosus Bonaparte & Sanchez (Lower Cretaceous, South America) have a bird-like distal end with attachment areas for a transverse ligament anteriorly, lateral and medial ligamentous prominences, and an anteroposteriorly, expanded pulley-like articular surface. The M. extensor digitorum longus flexed the ankle and probably also extended the digits as in living birds and mammals. A separate tendinous slip for digit I probably passed from the M. flexor digitorum longus in a groove posteroventral to the medial ligamentous prominence.  相似文献   

20.
Abstract: The Spanish town of Galve (Teruel) is notable because of the abundance of Upper Jurassic and, especially, Lower Cretaceous vertebrates recorded there. Although most groups have been studied in detail, information on turtles is very limited even though the material is relatively abundant. So far, no turtle taxa have been identified at the generic level. The only Lower Cretaceous articulated specimen from Galve is analysed here. It is identified as a representative of Cryptodira, Galvechelone lopezmartinezae gen. et sp. nov. Galvechelone lopezmartinezae is determined as a taxon belonging to the node that groups the turtles traditionally assigned to ‘Macrobaenidae’ and ‘Sinemydidae’, and other taxa such as the members of Panchelonioidea. This node, very abundant in the Lower Cretaceous of Asia, and with a broad subsequent distribution, has recently been recognized in the Lower Cretaceous of Europe. The diversity of basal members of Eucryptodira in the European Late Jurassic (represented by Thalassemydidae, Plesiochelyidae and Eurysternidae) was high. Owing to a relative scarcity of well‐preserved early Cretaceous turtles from Europe, the knowledge of this group of reptiles is limited. The study of the new turtle from Galve, together with the recently described Hoyasemys jimenezi, and the recently completed review of the enigmatic Chitracephalus dumonii demonstrate that members of the cryptodiran node grouping ‘Macrobaenidae’, ‘Sinemydidae’ and Panchelonioidea were also very diverse in this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号