首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Oelze 《Journal of bacteriology》1992,174(15):5021-5026
Control of the synthesis of bacteriochlorophylls (Bchls) a and c by light and oxygen was studied in Chloroflexus aurantiacus grown in batch or chemostat culture with serine as the growth-limiting substrate. For comparison, inhibition by gabaculine of the formation of selected tetrapyrroles was studied. The inhibitory effect of gabaculine decreased in the following order of tetrapyrrole formation: coproporphyrin greater than Bchl c greater than Bchl a. Not only did addition of 5-aminolevulinate (ALA) reverse the inhibition by gabaculine, it also caused an increase in Bchl c content when the cultures grew at high concentrations of ALA. Inhibition of Bchl a, Bchl c, and coproporphyrin formation by oxygen was similar to inhibition by gabaculine. Addition of ALA to aerated cultures led to significant accumulation of coproporphyrin. These results suggest that oxygen inhibits tetrapyrrole formation at a site before ALA formation. Control by light was studied with chemostat cultures transferred from 5 klx to 25 klx. This resulted in only a transient increase of the protein level of the culture, while specific contents of Bchls c and a and the ratio Bchl c/Bchl a decreased to lower steady states. However, the specific content of coproporphyrin increased. Addition of ALA to chemostat cultures adapted to 50 klx increased specific coproporphyrin and Bchl c contents by factors of about 20 and 4, respectively, while the specific Bchl a content was only slightly increased and protein levels were unaffected. Increasing the serine concentration caused an initial increase in the specific Bchl c content, which returned to the original value as soon as the protein content had attained its maximal level. These results suggest that light does not control ALA formation as strictly as oxygen and that competition of biomass formation and tetrapyrrole synthesis for common precursors may be influenced by light.  相似文献   

2.
Rhodopseudomonas sphaeroides mutant H5 lacking 5-aminolevulinic acid synthase was employed to study the control of the formation of total bacteriochlorophyll as well as of the B875- and B850-bacteriochlorophyll protein complexes. The organisms were grown phototrophically in a chemostat where cell protein formation was limited by iron ions and bacteriochlorophyll by 5-aminolevulinic acid. 0.07 mol of bacteriochlorophyll was formed per mol of 5-amino-levulinic acid consumed. This stoichiometric relationship was not influenced by a twelve-fold variation in light energy flux. However, cell protein levels increased and, consequently, cellular specific bacteriochlorophyll contents decreased with increases in light energy flux. The ratio of B875- to B850-pigment protein complexes was inversely proportional to the velocity of 5-aminolevulinic acid supply (mol per cell protein and time) which in this system equals the velocity of 5-aminolevulinic acid consumption and the velocity of bacteriochlorophyll formation. Light had no direct effect on the ratio of B875- per B850-pigment complexes but an indirect effect via its control of protein formation. Changes in the ratio of the two pigment complexes resulted from the fact that significantly lower amounts of 5-aminolevulinic acid supplied per protein and time were required to saturate the system assembling the B875-complexes than that assembling the B850-complexes. The data suggest lack of light-dependent control in the formation of bacteriochlorophyll and its complexes subsequent to the 5-aminolevulinic acid pool.  相似文献   

3.
Chloroflexus aurantiacus was grown photoheterotrophically in a chemostat in order to study the influence of growth rate on the formation of bacteriochlorophyll a (Bchl a) which represents the membrane-bound photosynthetic pigment complexes, and of Bchl c which represents the light harvesting pigment-proteins of the chlorosome. Steady state cell protein levels as well as specific Bchl a contents increased linearly and specific Bchl c contents exponentially when the dilution rate, representing growth rate, was decreased. In spite of differences in the light intensities, continuous cultures growing at comparable growth rates and densities exhibited comparable specific contents of both Bchls and largely identical molar ratios of Bchl c/Bchl a. The growth rate of constantly illuminated batch cultures was varied by changing the concentration of growth-limiting nutrients. Cultures growing at higher growth rates showed higher cell densities but lower specific Bchl levels as well as lower molar ratios of Bchl c/Bchl a than cultures growing at low growth rate. Determination of the light energy flux required for half-maximal saturation of photosynthetic activity (light dependent proton extrusion) by chemostat cultures showed a dependency of that activity by the content of cellular Bchl c. In summary, the results suggest that, growth rate or a factor regulating growth rate, rather than light affected specific Bchl levels and because of the increasing molar ratio of Bchl c to Bchl a, the light harvesting capacity and photosynthetic efficiency of the photosynthetic apparatus.  相似文献   

4.
Rhodobacter sphaeroides 2.4.1 is a member of the nonsulfur purple facultative photosynthetic proteobacteria, capable of growth under a variety of cultivation conditions. In addition to the structural polypeptides and bacteriochlorophyll, the two major antenna complexes, B875 and B800-850, contain a variety of carotenoids which are an important structural and functional component of the membrane-bound photosynthetic complexes of this bacterium. Two major carotenoids, spheroidene and its keto derivative, spheroidenone, are differentially synthesized by R. sphaeroides, depending on the growth conditions. Spheroidene prevails during growth under anaerobic conditions and low light intensities, whereas spheroidenone is predominant in semiaerobically grown cells or during anaerobic growth at high light intensities. In this study, we demonstrate that in wild-type cells, spheroidene is predominantly associated with the B800-850 photosynthetic antenna complex and spheroidenone is more abundant in the B875 complex. Exploiting mutants defective in the biosynthesis of either the B875 or B800-850 light-harvesting complex, we demonstrate an association between the formation of either the B875 or B800-850 complex, on the one hand, and the accumulation of spheroidenone or spheroidene, on the other. The possible involvement of the conversion of spheroidene to spheroidenone as a significant control mechanism involved in the adaptation of R. sphaeroides to changes in light intensity and oxygen tension is discussed.  相似文献   

5.
Light-harvesting mutants of Rhodopseudomonas sphaeroides lacking either the B800-850 complex or the B875 complex have been characterized by their absorption spectra in the visible and near-infrared region, and by their ability to transfer energy from the light-harvesting complexes to the reaction center. A new method of measuring the relative efficiency of energy transfer from the light-harvesting complexes to the reaction center is described. The B875- mutant had absorption maxima in the near-infrared at 800 and 849 nm with no evidence of an 875-nm shoulder. The efficiency of energy transfer from the light-harvesting complexes to the reaction center in the B875- mutant was 24% of the value measured for the wild-type strain and the B800-850- mutant. Yet, despite the fact that the efficiency of energy transfer for the B800-850- mutant and the wild-type strain were the same, there was a large difference in their photosynthetic unit size. These results are discussed in the context of a model in which light energy captured by the B800-850 complexes is transferred through the B875 complexes to the reaction center.  相似文献   

6.
P J Kiley  A Varga    S Kaplan 《Journal of bacteriology》1988,170(3):1103-1115
Two mutants of Rhodobacter sphaeroides defective in formation of light-harvesting spectral complexes were examined in detail. Mutant RS103 lacked the B875 spectral complex despite the fact that substantial levels of the B875-alpha polypeptide (and presumably the beta polypeptide) were present. The B800-850 spectral complex was derepressed in RS103, even at high light intensities, and the growth rate was near normal at high light intensity but decreased relative to the wild type as the light intensity used for growth decreased. Mutant RS104 lacked colored carotenoids and the B800-850 spectral complex, as well as the cognate apoproteins. This strain grew normally at high light intensity and, as with RS103, the growth rate decreased as the light intensity used for growth decreased. At very low light intensities, however, RS104 would grow, whereas RS103 would not. Structural analysis of these mutants as well as others revealed that the morphology of the intracytoplasmic membrane invaginations is associated with the presence or absence of the B800-850 complex as well as of carotenoids. A low-molecular-weight intracytoplasmic membrane polypeptide, which may play a role in B800-850 complex formation, is described, as is a 62,000-dalton polypeptide whose abundance is directly related to light intensity as well as the absence of either of the light-harvesting spectral complexes. These data, obtained from studies of mutant strains and the wild type, are discussed in light of photosynthetic membrane formation and the abundance of spectral complexes per unit area of membrane. Finally, a method for the bulk preparation of the B875 complex from wild-type strain 2.4.1 is reported.  相似文献   

7.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

8.
Low-temperature heterogeneous absorption and circular dichroism spectra of the Rb. sphaeroides LH2 complexes are calculated within the framework of the mini-exciton theory and diagonal static random disorder for the pure electronic transitions of the monomeric Bchl molecules. The coupling of Bchl molecules with the surrounding amino acid residues has been shown to change both the exciton distribution between the pigment molecules in each of the exciton states. The value of the delocalization index depends on the excitation wavelength and varies between 2-6 Bchl molecules. The optical transitions occurring at 780-790 and 820 nm have been found to be strongly mixed so that all Bchl molecules of the LH2 complex predetermine absorption in these spectral regions. On the other hand, absorption at 800 and 850 nm is mainly determined by the cycles of 9 and 18 Bchl molecules, respectively. Thus, the light energy absorbed by the B800 molecules at 800 nm is transferred to the B850 molecules by the interlevel exciton relaxation processes due to the population of the heavily mixed 820-nm exciton levels. The width of the heterogeneous absorption band for the cyclic monomeric aggregate has been shown to decrease as compared with the monomeric absorption band by square root(Ndel) time, where Ndel is the mean number of pigments over which the exciton is delocalized within the excited absorption band.  相似文献   

9.
Gall A  Cogdell RJ  Robert B 《Biochemistry》2003,42(23):7252-7258
In the LH2 proteins from Rhodobacter (Rb.) sphaeroides, the hydrogen bonds between the bacteriochlorophyll (Bchl) molecules and their proteic binding sites exhibit a strong variance with respect to carotenoid content and type. In the absence of the carotenoid molecule, such as in the LH2 from Rb. sphaeroides R26.1, the void in the protein structure induces a significant reorganization of the binding site of both Bchl molecules responsible for the 850 nm absorption, which is not observed when the 800 nm absorbing Bchl is selectively removed from these complexes. FT Raman spectra of LH2 complexes from Rb. sphaeroides show that the strength of the hydrogen bond between the 850 nm absorbing Bchl bound to the alpha polypeptide and the tyrosine alpha(45) depends precisely on the chemical nature of the bound carotenoid. These results suggest that the variable extremity of the carotenoid is embedded in these LH2 complexes, lying close to the interacting Bchl molecules. In the LH2 from Rhodopseudomonas acidophila, the equivalent part of the rhodopin glucoside, which bears the glucose group, lies close to the amino terminal of the antenna polypeptide. This contrast suggests that the structure of the carotenoid binding site in LH2 complexes strongly depends on the bacterial species and/or on the chemical nature of the bound carotenoid.  相似文献   

10.
Rhodopseudomonas sphaerodes mutant H5 lacking 5-aminolevulinic acid synthase was grown phototrophically in chemostat cultures limited by malate. Tetrapyrrole formation was limited by 5-aminolevulinic acid. With variation of dilution rates the cultures exhibited two regions of almost constant cell protein, dry weight and bacteriochlorophyll levels suggesting the formation of two physiological modifications of the strain. These modifications were further characterized by differences in the rates of 5-aminolevulinic acid consumption, the production of reserve material, the stoichiometries of 5-aminolevulinic acid consumption and bacteriochlorophyll or cytochrome production, specific bacteriochlorophyll and cytochrome contents as well as the ratio of bacteriochlorophyll protein complexes. In contrast, cellular levels of coproporphyrin II stayed almost constant over the entire range of dilution rates employed. Bacteriochlorophyll and b-type cytochrome cellular levels exhibited hyperbolic dependencies on the specific rate of 5-aminolevulinic acid consumption, and c-type cytochrome levels a signmoidal dependency. Bacteriochlorophyll cellular levels showed a biphasic dependency with half maximal saturations at 2.6 and 15.4 nmol of 5-aminolevulinic acid consumed per mg of protein and h, and maximal levels of 15.2 and 21 nmol bacteriochlorophyll per mg of protein. Cellular levels of c- and b-type cytochromes were half maximally saturated at 19.5 and 14.5 nmol 5-aminolevulinic acid consumed per mg protein and h while maximal levels were reached at 0.5 and 0.17 nmol of c- and b-type cytochromes, respectively, per mg of protein.The data suggest that within the cell bacteriochlorophyll as well as c- and b-type cytochrome units are assembled according to a defined pattern of kinetics characteristic of each group of compounds. Under otherwise constant external conditions the expression of the pattern is controlled by the rate of 5-aminolevulinic acid supply.  相似文献   

11.
Changes in the relative content of pigment-protein complexes, RC-B880 and B800-850, were studied in membranes of Rhodobacter sphaeroides forma sp. denitrificans cultured under various anaerobic conditions. The content of each pigment-protein complex was determined by the decomposition of the absorption spectra of membranes in the near-infrared region into the spectra of RC-B880 and B800-850. The standard spectrum of each complex in the membranes was obtained using two absorption spectra of membranes with different ratios of the complexes by eliminating the spectrum of first one than the other complex. Spectra composed from the two standard spectra were in good agreement with original membrane spectra after subtraction of the contribution of scattering in various membrane samples. Bacteriochlorophyll (BChl) content in the membrane was dependent on the light intensity during growth. The relation between the total BChl content in the membrane and BChl content in the RC-B880 and B800-850 complex was linear above 15 nmol BChl per mg membrane protein, regardless of the culturel conditions, photosynthetic or photo-denitrifying. The linear relationship reached a point where all BChl molecules were contained in RC-B880 at 13 nmol BChl per mg membrane protein. This means that only RC-B880 would be synthesized below the threshold, and above the threshold additional BChl was distributed between RC-B880 and B800-850 in a constant ratio (1:5.7). The results suggest that the syntheses of B800-850 and RC-B880 are not regulated independently.  相似文献   

12.
Picosecond absorption spectroscopy has been used to investigate energy-transfer dynamics within the LH1 and LH2 light-harvesting complexes of three mutants of Rhodobacter sphaeroides. We demonstrate that both complexes are inhomogeneous; each contains a specialized pigment pool which absorbs maximally at a longer wavelength. Within LH2 (mutant NF57), Bchl850 transfers energy to Bchl870 in 39 +/- 9 ps; within LH1 (mutants M21 and M2192), energy is transferred from Bchl875 to Bchl896 in 22 +/- 4 and 35 +/- 5 ps, respectively. Examination of the decay of induced absorption anisotropy indicates that each of these specialized pools exists in a state which is highly organized with respect to the remainder of the pigments. Such an arrangement may facilitate and direct energy migration toward the reaction center.  相似文献   

13.
Energy transfer within the peripheral light-harvesting antenna of the purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris was studied by one- and two-color pump-probe absorption spectroscopy with approximately 100-fs tunable pulses at room temperature and at 77 K. The energy transfer from B800 to B850 occurs with a time constant of 0.7 +/- 0.05 ps at room temperature and 1.8 +/- 0.2 ps at 77 K and is similar in both species. Anisotropy measurements suggest a limited but fast B800 <--> B800 transfer time (tau approximately 0.3 ps). This is analyzed as incoherent hopping of the excitation in a system of spectrally inhomogeneous antenna pigment-protein complexes, by a master equation approach. The simulations show that the measured B800 dynamics is well described as energy transfer with a characteristic average nearest-neighbor pairwise transfer time of 0.35 ps among approximately 10 Bchl molecules in a circular arrangement, in good agreement with the recent high-resolution structure of LH2. The possible presence of fast intramolecular relaxation processes within the Bchl a molecule was investigated by measurement of time-resolved difference absorption spectra and kinetics of Bchl a in solution and in low-temperature glasses. From these measurements it is concluded that fast transients observed at room temperature are due mainly to solvation processes, whereas at 77 K predominantly slower (> 10-ps) relaxation occurs.  相似文献   

14.
15.
Sites of intracytoplasmic membrane growth and temporal relations in the assembly of photosynthetic units were examined in synchronously dividing Rhodopseudomonas sphaeroides cells. After rate-zone sedimentation of cell-free extracts, apparent sites of initiation of intracytoplasmic membrane growth formed an upper pigmented band that sedimented more slowly than the intracytoplasmic membrane-derived chromatophore fraction. Throughout the cell cycle, the levels of the peripheral B800-850 light-harvesting pigment-protein complex relative to those of the core B875 complex in the upper pigmented fraction were only about half those of chromatophores. Pulse-labeling studies with L-[35S]methionine indicated that the rates of assembly of proteins in the upper pigmented fraction were much higher than those of chromatophores throughout the cell cycle; rates for the reaction center polypeptides were estimated to be approximately 3.5-fold higher than in chromatophores when the two membrane fractions were equalized on a protein basis. In pulse-chase studies, radioactivity of the reaction center and B875 polypeptides increased significantly in chromatophores and decreased in the upper pigmented band during cell division. These data suggest that the B875 reaction center cores of the photosynthetic units are inserted preferentially into sites of membrane growth initiation isolated in the upper pigmented band and that the incomplete photosynthetic units are transferred from their sites of assembly into the intracytoplasmic membrane during cell division. These results suggested further that B800-850 is added directly to the intracytoplasmic membrane throughout the cell cycle.  相似文献   

16.
Abstract The photosynthetic bacterium Rhodobacter sulfidophilus is able to grow chemotrophically and phototrophically at a broad range of light intensities. In contrast to other facultative phototrophs, R. sulfidophilus synthesizes reaction center and light-harvesting (LH) complexes, B870 (LHI) and B800–850 (LHII) even under full aerobic conditions in the dark. The content of bacteriochlorophyll (BChl) varied from 3.8 μg Bchl per mg cell protein when grown at high light intensity (20 000 lux) to 60 μg Bchl per mg cell protein when grown at low light intensities (6 lux). After a shift from high light to low light conditions, the size of the photosynthetic unit increased by a factor of 4. Chromatographie analysis of the LHII complex, isolated and purified from cells grown phototrophically (at high and low light intensities) and chemotrophically, could resolve only one type of a and one type of β polypeptide in the purified complex, of which the N-terminal sequences have been determined.  相似文献   

17.
Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号