首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of subunit VII, the ubiquinone-binding protein of the cytochrome b-c1 complex, in electron transfer reactions was investigated in yeast mitochondria. Preincubation of submitochondrial particles with specific antibody against subunit VII prior to addition of either succinate, NADH, or the reduced form of the decyl analogue of ubiquinol resulted in an approximately 40% increase in the extent of cytochrome c1 reduction compared with controls containing preimmune serum. Addition of antimycin, an inhibitor of center i, to submitochondrial particles resulted in a 21% decrease in the rate and a 36% decrease in the extent of cytochrome c1 reduction by succinate. Preincubation of submitochondrial particles with the antibody against subunit VII prior to addition of antimycin resulted in an increase in both the rate and extent of cytochrome c1 reduction to the levels observed in the control without inhibitor. The addition of myxothiazol (an inhibitor of center o), myxothiazol plus antimycin, or alkyl hydroxynaphthoquinone (an inhibitor analogue of ubiquinone) resulted in an almost complete inhibition in both the rate and extent of cytochrome c1 reduction; however, preincubation with the antibody against subunit VII prior to addition of these inhibitors resulted in a significant increase in cytochrome c1 reduction. These results confirm our previous report (Japa, S., Zhu, Q. S., and Beattie, D. S. (1987) J. Biol. Chem. 262, 5441-5444) that subunit VII is involved in electron transfer reactions at center o of the b-c1 complex. We suggest that the binding of antibody to subunit VII inhibits the transfer of electrons to cytochrome b-566. Consequently, two electrons are transferred to the iron-sulfur protein and cytochrome c1 through an antimycin-insensitive pathway. Moreover, the antibody may change the conformation of subunit VII, such that the myxothiazol and hydroxynaphthoquinone binding sites are partially blocked thus permitting electron flow to cytochrome c1.  相似文献   

2.
The assembly of the iron-sulfur protein into the cytochrome bc1 complex after import and processing of the precursor form into mitochondria in vitro was investigated by immunoprecipitation of the radiolabeled iron-sulfur protein from detergent-solubilized mitochondria with specific antisera. After import in vitro, the labeled mature form of the iron-sulfur protein was immunoprecipitated by antisera against both the iron-sulfur protein and the entire bc1 complex from mitochondria solubilized with either Triton X-100 or dodecyl maltoside. After sodium dodecyl sulfate solubilization of mitochondria, however, the antiserum against the iron-sulfur protein, but not that against the bc1 complex, immunoprecipitated the radiolabeled iron-sulfur protein. These results suggest that in mitochondria the mature form of the iron-sulfur protein is assembled with other subunits of the bc1 complex that are recognized by the antiserum against the bc1 complex. By contrast, the intermediate and precursor forms of the iron-sulfur protein that accumulated in the matrix when proteolytic processing was blocked with EDTA and o-phenanthroline were not efficiently assembled into the bc1 complex. The import and processing of the iron-sulfur protein also occurred in mitochondria lacking either cytochrome b (W-267) or the iron-sulfur protein (JPJ1). The mature form of the iron-sulfur protein was immunoprecipitated by antisera against the bc1 complex or core protein I after import in vitro into these mitochondria, suggesting that the mature form is associated with other subunits of the bc1 complex in these strains.  相似文献   

3.
The functional role and topographical orientation in the inner membrane of subunit VII, the ubiquinone-binding protein, of the cytochrome b-c1 complex of yeast mitochondria has been investigated. The apparent molecular weight of this subunit on sodium dodecyl sulfate-urea gels was calculated to be 15,500, while its amino acid composition was similar to that of the Q-binding proteins present in the cytochrome b-c1 complexes isolated from both beef heart and yeast mitochondria. The specific antibody obtained against subunit VII inhibited 30-47% of the ubiquinol-cytochrome c reductase activity in the isolated cytochrome b-c1 complex and in submitochondrial particles but had no effect on cytochrome c reductase activity in mitoplasts, mitochondria from which the outer membrane has been removed. Furthermore, the antibody against subunit VII strongly inhibited (74%) the reduction of cytochrome b by succinate in the presence of antimycin, an inhibitor of center i, but had no effect on cytochrome b reduction in the presence of myxothiazol, an inhibitor of center o. These results suggest that subunit VII, the Q-binding protein, is involved in electron transport at center o of the cytochrome b-c1 complex of the respiratory chain and that subunit VII is localized facing the matrix side of the inner mitochondrial membrane.  相似文献   

4.
The synthesis and assembly of subunit VII, the Q-binding protein of the cytochrome b-c1 complex, into the inner mitochondrial membrane has been compared in wild-type yeast cells and in a mutant cell line lacking cytochrome b. Both immunoblotting and immunoprecipitation analysis with specific antiserum against subunit VII indicated that this subunit is not detectable in the mutant as compared to the wild-type mitochondria. However, labeling in vivo of the cytochrome b deficient yeast cells in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone clearly demonstrated that subunit VII was synthesized in the mutant cells to the same extent as in the wild-type cells. Incubation of subunit VII, synthesized in vitro in a reticulocyte lysate programmed with yeast RNA, with mitochondria isolated from both wild-type and cytochrome b deficient yeast cells revealed that the subunit VII was transported into the wild-type mitochondria into a compartment where it was resistant to digestion by exogenous proteinase K. By contrast, subunit VII was bound in lowered amounts to the cytochrome b deficient mitochondria where it remained sensitive to digestion by exogenous proteinase K, suggesting that the import of subunit VII may be impaired due to the lack of cytochrome b. Furthermore, subunit VII was synthesized both in vivo and in vitro with the same molecular mass as the mature form of this protein.  相似文献   

5.
A strain of yeast lacking the gene for the Rieske iron-sulfur protein (RIP) of the cytochrome b-c1 complex was used to study the assembly of this complex in the mitochondrial membrane. This strain lacks the mRNA for the iron-sulfur protein as evidenced by both Northern hybridization using a probe containing the coding region of the gene plus in vitro translation of total RNA followed by immunoprecipitation with a specific antibody against the iron-sulfur protein. In addition, isolated mitochondria from this strain lacked cytochrome c reductase activity with either succinate or the decyl analog of ubiquinol as substrate. Immunoblotting studies with antiserum against the cytochrome b-c1 complex revealed that mitochondria from the iron-sulfur protein-deficient strain have levels of core protein I, core protein II, and cytochrome c1 equal to those of wild-type mitochondria; however, a decrease in cytochrome b was evident from both immunoblotting and spectral analysis. Moreover, it is evident from the immunoprecipitates of radiolabeled mitochondria that the amounts of the low-molecular-weight subunits (17, 14, and 11 kDa) are decreased 53, 65, and 50%, respectively, in mitochondria lacking the iron-sulfur protein. These results suggest that the iron-sulfur protein is required for the complete assembly of the low-molecular-weight subunits into the cytochrome b-c1 complex.  相似文献   

6.
A purified cytochrome b-c1 complex isolated from yeast mitochondria has been reconstituted into proteoliposomes. The reconstituted comp]lex catalyzed antimycin A-sensitive electron transfer from different analogues of coenzyme Q to cytochrome c. The reconstituted complex was also capable of energy conservation as indicated by uncoupler-stimulated rates of electron transfer, electrogenic proton ejection, and reversed electron flow from cytochrome b to coenzyme Q2 in the presence of antimycin A driven by a valinomycin-induced K+-diffusion potential (negative inside). Close to four protons were ejected per two electrons transported through the reconstituted b-c1 complex with ferricyanide as an artificial and impermeable electron acceptor.l The H+/2e- ratio decreased to two in the presence of the proton-conducting agent, carbonyl cyanide m-chlorophenylhydrazone. The same processes were studied in parallel in energy-conserving site 2 of rat liver mitochondria with similar results. In the reconstituted b-c1 complex, dicyclohexylcarbodiimide (DCCD) blocked the function of the electrogenic proton translocating device in the forward direction of proton ejection as well as in the backwards direction, measured as reversed electron flow from cytochrome b to coenzyme Q2 driven by a K+-diffusion potential. The primary effect of DCCD is localized on the proton ejection process, as the low proton conductance of the proteoliposome membrane was totally preserved after DCCD treatment.  相似文献   

7.
The reduction of duroquinone (DQ) and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB) by NADH and ethanol was investigated in intact yeast mitochondria with good respiratory control ratios. In these mitochondria, exogenous NADH is oxidized by the NADH dehydrogenase localized on the outer surface of the inner membrane, whereas the NADH produced by ethanol oxidation in the mitochondrial matrix is oxidized by the NADH dehydrogenase localized on the inner surface of the inner membrane. The reduction of DQ by ethanol was inhibited 86% by myxothiazol; however, the reduction of DQ by NADH was inhibited 18% by myxothiazol, suggesting that protein-protein interactions between the internal (but not the external) NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase (the cytochrome bc1 complex) are involved in the reduction of DQ by NADH. The reduction of DQ and DB by NADH and ethanol was also investigated in mutants of yeast lacking cytochrome b, the iron-sulfur protein, and ubiquinone. The reduction of both quinone analogues by exogenous NADH was reduced to levels that were 10 to 20% of those observed in wild-type mitochondria; however, the rate of their reduction by ethanol in the mutants was equal to or greater than that observed in the wild-type mitochondria. Furthermore, the reduction of DQ in the cytochrome b and iron-sulfur protein lacking mitochondria was myxothiazol sensitive, suggesting that neither of these proteins is an essential binding site for myxothiazol. The mitochondria from the three mutants also contained significant amounts of antimycin- and myxothiazol-insensitive NADH:cytochrome c reductase activity, but had no detectable succinate:cytochrome c reductase activity. These results suggest that the mutants lacking a functional cytochrome bc1 complex have adapted to oxidize NADH.  相似文献   

8.
9.
A method for simultaneous purification of cytochrome c reductase and cytochrome c oxidase using a cytochrome c affinity column is presented. Cytochrome c from Saccharomyces cerevisiae was linked to an activated thiol-Sepharose gel via its Cys-102 residue located far from the lysine residues on the front side of the molecule, responsible for the interaction with the reductase and oxidase. In previously reported affinity chromatography techniques these lysine residues most probably reacted with the column. Cytochrome c oxidase and reductase from bovine heart mitochondria bind specifically to the affinity column and can be recovered separately at different ionic strength in the elution buffer. The enzymes are highly pure and active.  相似文献   

10.
A cytochrome b complex and cytochrome oxidase have been purified 14- and 20-fold respectively from yeast submitochondrial particles by a simple procedure involving their spontaneous precipitation from a deoxycholate extract. The recovery of both proteins was almost quantitative. The specific heme contents were 11 and 8 nmoles/mg protein for the cytochrome b complex and cytochrome oxidase respectively and both were spectrally pure. Sodium dodecyl sulfate gel electrophoresis resolved the cytochrome b complex into seven distinct subunits with molecular weights 42,000, 33,000, 27,500, 23,000, 15,500, 13,000 and 10,500. Cytochrome oxidase contained five bands with molecular weights 42,000, 26,500, 21,000, 14,000 and 10,500.  相似文献   

11.
12.
M J Nalecz  R P Casey  A Azzi 《Biochimie》1983,65(8-9):513-518
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstituted mitochondrial cytochrome b-c1 complex. In proteoliposomes containing b-c1 complex DCCD inhibits equally electron flow and proton translocation catalyzed by the enzyme. In both isolated and reconstituted systems the inhibitory effect is accompanied by structural alterations in the polypeptide pattern of the enzyme consistent with cross-linking between subunits V and VII. The kinetics of inhibition of enzymic activity correlates with that of the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C] DCCD to both isolated and reconstituted enzyme was also observed, though it was not correlated kinetically with the inhibition.  相似文献   

13.
A spectrally pure cytochrome b complex has been isolated from yeast mitochondria and shown to contain seven nonidentical subunits with the following molecular weights: I, 42,000; II, 33,000; III, 27,500; IV, 23,000; V, 15,500; VI, 13,000; and VII, 10,500. In order to determine the intracellular sites of translation of these polypeptides, yeast cells were labeled with [3H]leucine in the presence of specific inhibitors of mitochondrial or cytoplasmic translation. The labeling of subunits I and III was found to be insensitive to cycloheximide but was inhibited by chloramphenicol. Alternatively, subunits IV–VII were labeled in the presence of chloramphenicol but not in the presence of cycloheximide. Since subunit II was not significantly labeled in the presence of either inhibitor, the technique of labeling in vivo with [3H]formate was used to establish its site of biogenesis. Formate is incorporated by mitochondrial, but not cytoplasmic, ribosomes as N-formylmethionine at initiation and is therefore a marker for the products of mitochondrial translation. Subunits I–III were labeled under these conditions whereas the four smallest subunits were not. Taken together, the findings clearly establish that the three largest subunits of the cytochrome b complex are translated on mitochondrial ribosomes and that the four smallest are formed in the cytoplasm. The results also underscore the advantages of using [3H]formate to identify the products of mitochondrial translation.  相似文献   

14.
The QH2:cytochrome c oxidoreductase activity of the isolated bovine heart cytochrome b-c1 complex resolved into monomeric and dimeric form was titrated with three different inhibitors of electron transfer, antimycin, myxothiazol, and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). In all cases one inhibitor molecule per cytochrome c1 was found necessary to block completely the activity of both molecular forms of the enzyme. The antimycin-sensitive cytochrome c reduction catalyzed by the b-c1 complex was also studied as a function of increasing concentrations of either cytochrome c or quinol. Double-reciprocal plots of the activity of the monomeric enzyme were found linear either when the concentration of cytochrome c or of quinol derivatives, 2,3-dimetoxy-5-methyl-6-decyl-1,4-benzoquinol (DBH), and 2-methyl-3-undecyl-1,4-naphthoquinol (UNH), was changed. Cytochrome c reductase activity of the dimeric b-c1 complex also showed a linear Lineweaver-Burk plot as a function of cytochrome c concentrations. In contrast to the monomeric enzyme, however, dimers of the b-c1 complex express a clear nonlinear kinetic behavior toward quinol derivatives, with two apparent Km values differing approximately by one order of magnitude (about 3-4 and about 20-30 microM). At saturating quinol concentrations the activity of the dimeric enzyme becomes two to three times higher than that of monomers. The nonlinear kinetic plots were found to be the same at different temperatures and different cytochrome c concentrations. The data suggest that although the monomer of the b-c1 complex appears to be the functional unit of the enzyme, the dimer is more active. A regulatory role of the dimerization process resulting in an increase of the electrons flux through the enzyme is postulated.  相似文献   

15.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

16.
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the b(H) heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

17.
Bovine heart cytochrome b-c1 complex dispersed in 0.1% dodecylmaltoside, 10 mM Tris-HCl (pH 7.4), was subjected to filtration on Ultrogel AcA 34 columns. Apparent Mr values of about 400,000 and 170,000 were estimated for the enzyme-detergent complex in the presence and absence of 50 mM KCl, respectively. Similar Mr values (about 390,000 and 160,000) were obtained after sucrose gradient centrifugation of the b-c1 complex species isolated using Ultrogel filtration. Both species contained eight polypeptides, as in the original cytochrome b-c1 complex. The experiments suggest that the two species represent a dimer and a monomer of the b-c1 complex. The molecular conversion between the monomeric and dimeric state of the enzyme was found to be reversible. Both monomers and dimers of the b-c1 complex were competent to catalyze QH2:cytochrome c reductase activity with approximately the same maximal velocity. The finding that both molecular forms of the enzyme appear equally active does not support functional models based exclusively on a dimeric b-c1 complex.  相似文献   

18.
The mitochondrial electron transport chain complexes are large multisubunit complexes embedded in the inner membrane. We report here that in the yeast Saccharomyces cerevisiae, the cytochrome bc(1) and cytochrome c oxidase complexes co-exist as a larger complex of approximately 1000 kDa in the mitochondrial membrane. Following solubilization with a mild detergent, the cytochrome bc(1)-cytochrome c oxidase complex remains stable. It was analyzed using the techniques of gel filtration and blue native-polyacrylamide gel electrophoresis. Direct physical association of subunits of the cytochrome bc(1) complex with those of the cytochrome c oxidase complex was verified by co-immunoprecipitation analysis. Our data indicate that the cytochrome bc(1) complex is exclusively in association with the cytochrome c oxidase complex in yeast mitochondria. We term this complex the cytochrome bc(1)-cytochrome c oxidase supracomplex.  相似文献   

19.
Famoxadone is a new cytochrome bc(1) Q(o) site inhibitor that immobilizes the iron-sulfur protein (ISP) in the b conformation. The effects of famoxadone on electron transfer between the iron-sulfur center (2Fe-2S) and cyt c(1) were studied using a ruthenium dimer to photoinitiate the reaction. The rate constant for electron transfer in the forward direction from 2Fe-2S to cyt c(1) was found to be 16,000 s(-1) in bovine cyt bc(1). Binding famoxadone decreased this rate constant to 1,480 s(-1), consistent with a decrease in mobility of the ISP. Reverse electron transfer from cyt c(1) to 2Fe-2S was found to be biphasic in bovine cyt bc(1) with rate constants of 90,000 and 7,300 s(-1). In the presence of famoxadone, reverse electron transfer was monophasic with a rate constant of 1,420 s(-1). It appears that the rate constants for the release of the oxidized and reduced ISP from the b conformation are the same in the presence of famoxadone. The effects of famoxadone binding on electron transfer were also studied in a series of Rhodobacter sphaeroides cyt bc(1) mutants involving residues at the interface between the Rieske protein and cyt c(1) and/or cyt b.  相似文献   

20.
When succinate oxidation by submitochondrial particles is blocked by antimycin, NoHOQnO or funiculosin, addition of ferricyanide restores oxygen uptake coupled to membrane potential generation. The effect of ferricyanide is abolished by mucidin or myxothiazol, as well as by KCN. The data strongly favor a cyclic redox loop mechanism in site 2 and show that either heme of the ferrous cytochrome b or ubisemiquinone formed in the QH2-oxidizing center of complex b-c1 is accessible to ferricyanide at the outer (M) side of the submitochondrial particle membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号