首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraordinarily low substrate specificity of P-glycoprotein conflicts with the notion that specific substrate interactions are required in the control of the reaction path in an active transport system. The difficulty is shown to be overcome by a half-coupled mechanism in which the ATP reaction is linked to carrier transformations, as in a fully coupled system, but in which the transported substrate plays a passive role. The mechanism, which requires no specific interaction with the substrate, brings about uphill transport. A half-coupled mechanism is directly supported by two observations: (i) almost completely uncoupled ATPase activity in purified P-glycoprotein, and (ii) a pattern of substrate specificity like that of passive systems, where maximum rates for different substrates vary little (unlike active systems, where maximum rates vary greatly). The mechanism accommodates other findings: partial inhibition of ATPase activity by an actively transported substrate; simultaneous binding and translocation of more than one substrate molecule; and stimulation or inhibition of the transport of one substrate molecule by another. A half-coupled system associated with an internal competitive inhibitor should behave as if tightly coupled, in agreement with the effects of the synthetic peptide, polytryptophan. The degree of coupling in the intact system is yet to be determined, however. A half-coupled ATPase mechanism could originally have evolved in a flippase, where immersion of the carrier in its substrate, the membrane lipid, precludes uncoupled ATP hydrolysis. These concepts may have wider application. An uncoupled antiport mechanism, driven by a proton gradient rather than ATP, can explain low selectivity in the SMR multidrug carriers of bacteria, and a half-coupled mechanism for the ion-driven cotransport of water (the substrate in which the carrier site is immersed) can explain a recently proposed uphill flow of water. Received: 23 April 1999/Revised: 29 July 1999  相似文献   

2.
Glucose transport by mixed ruminal bacteria from a cow.   总被引:1,自引:1,他引:0       下载免费PDF全文
H Kajikawa  M Amari    S Masaki 《Applied microbiology》1997,63(5):1847-1851
The glucose transport of mixed ruminal bacteria harvested from a holstein cow fed 5.0 kg of Italian ryegrass and 1.5 kg of flaked corn a day was investigated. The Eadie-Hofstee plot characterized two transport systems: a high-affinity, low-velocity system and a low-affinity, high-velocity system. The former system (K(m) = 16 microM; Vmax = 2.2 nmol/min/mg of protein) is considered dominant under this feeding condition based on the glucose concentration in the rumen (< 1 mM). In light of the facts that the protonophore SF6847 and the lipophilic triphenylmethyl phosphonium ion had no effect on the high-affinity system and an artificially generated proton gradient and electrical potential across the cell membrane did not increase glucose transport, a proton motive force is not be involved in the system. On the other hand, from the facts that chlorhexidine inhibited about 90% of the high-affinity system while iodoacetate showed no significant effect, and a high phosphoenolpyruvate-dependent phosphorylation of glucose was actually shown, the phosphoenolpyruvate-dependent phosphotransferase system is considered the main system in the high-affinity system. Moreover, as shown by the facts that harmaline inhibited about 30% of the high-affinity system and the artificially generated sodium gradient across the cell membrane significantly stimulated glucose transport, this system also includes sodium symport to some degree. The high-affinity system was sensitive to a decrease in pH (< 6.5) and was inhibited by the presence of sucrose, mannose, and fructose.  相似文献   

3.
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.  相似文献   

4.
An inward-directed H+ gradient markedly stimulated lactate uptake in rabbit intestinal brush-border membrane vesicles, and uphill transport against a concentration gradient could be demonstrated under these conditions. Uptake of lactate was many-fold greater in the presence of a H+ gradient than in the presence of a Na+ gradient. Moreover, there was no evidence for uphill transport of lactate in the presence of a Na+ gradient. The H+-gradient-dependent stimulation of lactate uptake was not due to the effect of a H+-diffusion potential. The uptake process in the presence of a H+ gradient was saturable [Kt (concn. giving half-maximal transport) for lactate 12.7 +/- 4.5 mM] and was inhibited by many monocarboxylates. It is concluded that a H+ gradient, not a Na+ gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.  相似文献   

5.
An inward-directed proton gradient energizes the transport of intact glycylsarcosine against a concentration gradient in rabbit renal brush-border membrane vesicles. Dissipation of the proton gradient abolishes the uphill transport. Generation of an inside-negative membrane potential nearly doubles the intravesicular concentration of the dipeptide at the peak of the overshoot without altering the equilibrium value. These data provide direct evidence for peptide-proton cotransport in the renal brush-border membrane.  相似文献   

6.
When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.Abbreviations 2,4-DNP 2,4-dinitrophenol - 2-DOG 2-deoxyglucose - 6-DOG 6-deoxyglucose - pCMB para-hydroxymercuribenzoate  相似文献   

7.
The conductance of black lipid membranes in the presence of 2,4,6-trinitrophenol (or 2,4-dinitrophenol) is considerably enhanced, if the cation carriers valinomycin, enniatin B or nonactin are added. The effect is, however, largely independent of the cation concentration and is identical for the cations Li+, Na+ and Ba2+. This finding, as well as the sign and magnitude of the diffusion potential in the presence of a gradient of picrate are consistent with the assumption that the transport of picrate anions is facilitated by the above-mentioned macrocyclic compounds, but that cations are not directly involved. A model is suggested which, based on the generation of mobile defect structures by the incorporation of large molecules, allows one to explain facilitated transport without the assumption of stable chemical bonds between a carrier and its transported substrate. If K+ is present in the aqueous phase, the conductance is largely determined by the permeation of the cation complexes of valinomycin and nonactin. The conductance is, however, increases by adsorption of picrate anions to the membrane surface. The negative surface potential generated by the adsorption layer seems to be responsible for the saturation of the conductance at high picrate concentrations in the absence of valinomycin and nonactin.  相似文献   

8.
Transport of 2-deoxy-d-glucose (2-dGlc) and 6-deoxy-d-glucose (6-dGlc) is studied in Kluyveromyces marxianus, grown under different conditions. It is shown that early stationary phase cells contain only one glucose transporter, with low affinity for 6-dGlc and high affinity for 2-dGlc. This transporter is recognized by glucose and fructose. In late stationary phase cells, two transport systems are operative for 6-dGlc, one with a high and one with a low affinity. The high-affinity system appears to be a glucose-galactose carrier, catalyzing uphill transport, energized by coupling sugar transport to translocation of protons. Induction (or derepression) of the high-affinity 6-dGlc transport seems to be coupled, in an as yet unknown way, to citrate consumption and a strong alkalinization of the medium during growth. It is concluded that glucose transport in K. marxianus can proceed by at least two mechanisms: a glucose-fructose carrier, probably having phosphotransferase characteristics, and a derepressible glucose/galactose-proton symporter.  相似文献   

9.
The uptake of glucose by the glucose phosphotransferase system in Escherichia coli was inhibited greater than 90% by ascorbate. The uptake of the nonmetabolizable analog of glucose, methyl-alpha-glucoside, was also inhibited to the same extent, confirming that it was the transport process that was sensitive to ascorbate. Similarly, it was the transport function of mannose phosphotransferase for which mannose and nonmetabolizable 2-deoxyglucose were substrates that was partially inhibited by ascorbate. Other phosphotransferase systems, including those for the uptake of sorbitol, fructose and N-acetylglucosamine, but not mannitol, were also inhibited to varying degrees by ascorbate. The inhibitory effect on the phosphotransferase systems was reversible, required the active oxidation of ascorbate, was sensitive to the presence of free-radical scavengers, and was insensitive to uncouplers. Because ascorbate was not taken up by E. coli, it was concluded that the active inhibitory species was the ascorbate free radical and that it was interacting reversibly with a membrane component, possibly the different enzyme IIB components of the phosphotransferase systems. Ascorbate also inhibited other transport systems causing a slight reduction in the passive diffusion of glycerol, a 50% inhibition of the shock-sensitive uptake of maltose, and a complete inhibition of the proton-symport uptake of lactose. Radical scavengers had little or no effect on the inhibition of these systems.  相似文献   

10.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

11.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIAB(Man), two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIAB(Man), IIC(Man), IID(Man), and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIAB(Man) as well as membrane fragments containing IIC(Man) and IID(Man). These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIAB(Man).  相似文献   

12.
Specific growth rates of Bacteroides thetaiotaomicron NCTC 10582 with either glucose, arabinose, mannose, galactose or xylose as sole carbon sources were 0.42/h, 0.10/h, 0.38/h, 0.38/h and 0.16/h respectively, suggesting that hexose metabolism was energetically more efficient than pentose fermentation in this bacterium. Batch culture experiments to determine whether carbohydrate utilization was controlled by substrate-induced regulatory mechanisms demonstrated that mannose inhibited uptake of glucose, galactose and arabinose, but had less effect on xylose. Arabinose and xylose were preferentially utilized at high dilution rates (D > 0.26/h) in carbon-limited continuous cultures grown on mixtures of arabinose, xylose, galactose and glucose. When mannose was also present, xylose was co-assimilated at all dilution rates. Under nitrogen-limited conditions, however, mannose repressed uptake of all sugars, showing that its effect on xylose utilization was strongly concentration dependent. Studies with individual D-ZU-14C]-labelled substrates showed that transport systems for glucose, galactose, xylose and mannose were inducible. Measurements to determine incorporation of these sugars into trichloroacetic acid-precipitable material indicated that glucose and mannose were the principal precursor monosaccharides. Xylose was only incorporated into intracellular macromolecules when it served as growth substrate. Phosphoenolpyruvate:phosphotransferase systems were not detected in preliminary experiments to elucidate the mechanisms of sugar uptake, and studies with inhibitors of carbohydrate transport showed no consistent pattern of inhibition with glucose, galactose, xylose and mannose. These results indicate the existence of a variety of different systems involved in sugar transport in B. thetaiotaomicron.  相似文献   

13.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

14.
The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of uptake of the sugar in the presence of the Na+ gradient was identical with that attained in the absence of the gradient, suggesting that equilibrium was established. At the peak of the overshoot the uptake of D-glucose was more than 10-fold the equilibrium value. These results suggest that the imposition of a large extravesicular to intravesicular gradient of Na+ effects the transient movement of D-glucose into renal brush border membranes against its concentration gradient. The stimulation of D-glucose uptake into the membranes was specific for Na+. The rate of uptake was enhanced with increased concentration of Na+. Increasing Na+ in the external medium lowered the apparent Km for D-glucose. The Na+ gradient effect on D-glucose transport was dissected into a stimulatory effect when Na+ and sugar were on the same side of the membrane (cis stimulation) and an inhibitory effect when Na+ and sugar were on opposite sides of the membrane (trans inhibition). The uptake of D-glucose, at a given concentration of sugar, reflected the sum of the contributions from a Na+-dependent transport system and a Na+-independent system. The relative stimulation of D-glucose uptake by Na+ decreased as the sugar concentration increased. It is suggested, however, that at physiological concentrations of D-glucose the asymmetry of Na+ across the brush border membrane might fully account for uphill D-glucose transport. The physiological significance of the findings is enhanced additionally by observations that the Na+-dependent D-glucose transport system in the membranes in vitro possessed the sugar specificities and higg phlorizin sensitivity characteristic of more intact preparations. These results provide strong experimental evidence for the role of Na+ in transporting D-glucose across the renal proximal tubule luminal membrane.  相似文献   

15.
In order to elucidate the nature of endogenous proton conductance of rat liver inner mitochondrial membrane, the dependence of the rate of Ca2+ transport on pH was studied. It was found that the inhibiting effect of H+ is independent of protonation of functional groups of hypothetical Ca2+ carrier, but results from electrogenic transfer of H+ across the membrane, which is highly permeable for the proton. The adsorption of H+ by mitochondria is inhibited by ruthenium red and other specific inhibitors of Ca2+ transport. It is concluded that endogenous proton conductance of the inner mitochondrial membrane depends on the functioning of the same transport system essential for membrane permeability for Ca2+ and other bivalent cations. The correlation observed between the rates of H+ and Ca2+ transport in mitochondria and the ratio of cation mobilities in aqueous solutions is in favour of a "porous" mechanism of cation transport across the mitochondrial membrane.  相似文献   

16.
Prevotella bryantii B(1)4 grew faster on glucose than mannose (0.70 versus 0.45 h(-1)), but these sugars were used simultaneously rather than diauxically. 2-deoxy-glucose (2DG) decreased the growth rate of cells that were provided with either glucose or mannose, but 2DG did not completely prevent growth. Cells grown on glucose or mannose transported both (14)C-glucose and (14)C-mannose, but cells grown on glucose had over three-fold higher rates of (14)C-glucose transport than cells grown on mannose. The (14)C-mannose transport rates of glucose- and mannose-grown cells were similar. Woolf-Augustinsson-Hofstee plots were not linear, and it appeared that the glucose/mannose/2DG carrier acted as a facilitated diffusion system at high substrate concentrations. When cultures were grown on nitrogen-deficient (excess sugar) medium, isolates had three-fold lower (14)C-glucose transport, but the (14)C-mannose transport did not change significantly. (14)C-glucose and (14)C-mannose transport rates could be inhibited by 2DG and either mannose or glucose, respectively. The (14)C-glucose transport of mannose-grown cells was inhibited more strongly by mannose and 2DG than those grown on glucose. Cells grown on glucose or mannose had similar ATP-dependent glucokinase activity, and 2DG was a competitive inhibitor (K(i)=0.75 mM). Thin layer chromatography indicated that cell extracts also had ATP-dependent mannose phosphorylation, but only a small amount of phosphorylated 2DG was detected. Glucose, mannose or 2DG were not phosphorylated in the presence of PEP. Based on these results, it appeared that P. bryantii B(1)4 had: (1) two mechanisms of glucose transport, a constitutive glucose/mannose/2DG carrier and an alternative glucose carrier that was regulated by glucose availability, (2) an ATP-dependent glucokinase that was competitively inhibited by 2DG but was unable to phosphorylate 2DG at a rapid rate, and (3) virtually no PEP-dependent glucose, mannose or 2DG phosphorylation activities.  相似文献   

17.
Phosphoenolpyruvate was transported through the erythrocyte membrane at low pH (4.5-6.5). The influx was observed not only in an iso-osmotic sucrose medium, but also in 0.1 M-citrate solution, but it was negligible in an iso-osmotic NaC1 solution. Efflux, however, was observed in both the sucrose and NaC1 solutions. Compounds derived from phosphoenolpyruvate by replacing the methene group by similarly hydrophobic groups such as hydrogen or the methyl group were permeant but those with the hydrophilic hydroxymethyl group were impermeant. This transport was inhibited by the treatment with 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid or pyridoxal phosphate/NaBH4, which are known to be specific for the transport of anions such as C1-, SO42- and HPO42-. It showed saturation kinetics with respect to phosphoenolpyruvate concentration in the medium. These results suggest that the transport of phosphoenolpyruvate is mediated by the anion-transport system. Although phosphoenolpyruvate was transported against the concentration gradient, the transport was characterized as a passive transport, and this apparent uphill transport was interpreted by the Donnan equilibrium.  相似文献   

18.
Zhang W  Kaback HR 《Biochemistry》2000,39(47):14538-14542
The temperature dependence of lactose active transport, efflux down a concentration gradient, and equilibrium exchange were analyzed in right-side-out membrane vesicles from Escherichia coli containing wild-type lactose permease and mutant Glu325 --> Ala. With respect to uphill transport and efflux down a concentration gradient, both of which involve H(+) symport, Arrhenius plots with wild-type permease exhibit a discontinuity at 18-19 degrees C with a 7-8-fold decrease in activation energy above the phase transition. For equilibrium exchange, which does not involve H(+) symport, the change in activation energy is much less pronounced (2-3-fold) than that observed for active transport or efflux. Strikingly, mutant Glu325 --> Ala, which catalyzes equilibrium exchange as well as wild-type permease but is defective in all translocation reactions that involve net H(+) translocation, exhibits no change whatsoever in activation energy. The findings are consistent with the conclusion that the primary effect of the lipid phase transition is to alter coupling between substrate and H(+) translocation rather than the conformational change(s) responsible for translocation across the membrane.  相似文献   

19.
20.
The conductance of black lipid membranes in the presence of 2,4,6-trinitrophenol (or 2,4-dinitrophenol) is considerably enhanced, if the cation carriers valinomycin, enniatin B or nonactin are added. The effect is, however, largely independent of the cation concentration and is identical for the cations Li+, Na+ and Ba2+. This finding, as well as the sign and magnitude of the diffusion potential in the presence of a gradient of picrate are consistent with the assumption that the transport of picrate anions is facilitated by the above-mentioned macrocyclic compounds, but that cations are not directly involved. A model is suggested which, based on the generation of mobile defect structures by the incorporation of large molecules, allows one to explain facilitated transport without the assumption of stable chemical bonds between a carrier and its transported substrate.If K+ is present in the aqueous phase, the conductance is largely determined by the permeation of the cation complexes of valinomycin and nonactin. The conductance is, however, increased by adsorption of picrate anions to the membrane surface. The negative surface potential generated by the adsorption layer seems to be responsible for the saturation of the conductance at high picrate concentrations in the absence of valinomycin and nonactin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号