首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein content of melanosomes in the retinal pigment epithelium (RPE) was analyzed by mass spectrometry. More than 100 proteins were found to be common to two out of three variations of sample preparation. Some proteins normally associated with other organelles were detected. Several lysosomal enzymes were detected, with the presence of cathepsin D confirmed by immunoelectron microscopy, thus supporting the previously suggested notion that melanosomes may contribute to the degradation of ingested photoreceptor outer segment disks.  相似文献   

2.
The adult newt retina explanted together with the posterior eye wall and cultivated for a short time in a serum-free medium was tested as an experimental model by several criteria, including the expression of protein markers of the main retinal cell types. Some differences in the expression of specific photoreceptor, interneuron, and glial cell proteins as well as the localization of acetylcholinesterase activity were found during in vitro cultivation. Using this model, preliminary tests of new cell adhesion glycoproteins from the bovine retina and pigment epithelium were conducted, and the role of pigment epithelial cell proteins in improving cell viability in the cultivated newt retina was revealed. Moreover, the fraction of basic adhesion proteins from the bovine pigment epithelium improved the survival potential of the macroglial (Muller) cell population, compared to that in the control.  相似文献   

3.
In a continuing study of control processes of cerebral protein catabolism we compared the activity of cathepsin D from three sources (rat brain, bovine brain, and bovine spleen) on purified CNS proteins (tubulin, actin, calmodulin, S-100 and glial fibrillary acidic protein). The pH optimum was 5 for hydrolysis with tubulin as substrate for all three enzyme preparations, and it was pH 4 with the other substrates. The pH dependence curve was somewhat variable, with S-100 breakdown relatively more active at an acidic pH range. The formation of initial breakdown products and the further catabolism of the breakdown products was dependent on pH; hence the pattern of peptides formed from glial fibrillary acidic protein was different in incubations at different pH's. The relative activity of the enzyme preparations differed, depending on the substrate: with tubulin and S-100 as substrates, rat brain cathepsin D was the most active and the bovine spleen enzyme was the least active. With calmodulin and glial fibrillary acidic protein as substrates, rat brain and spleen cathepsin D activities were similar, and bovine brain cathepsin D showed the lowest activity. Actin breakdown fell between these two patterns.The rates of breakdown of the substrates were different; expressed as μg of substrate split per unit enzyme per h, with rat brain cathepsin D activity was 8–9 with calmodulin and S-100, 4 with glial fibrillary acidic protein, 1.8 with actin, and 0.9 with tubulin. The results show that there are differences in the properties of a protease like cathepsin D, depending on its source; furthermore, the rate of breakdown and the characteristics of breakdown are also dependent on the substrate.We recently measured the breakdown of brain tubulin by cerebral cathepsin D in a continuing study of the mechanisms and controls of cerebral protein catabolism (Bracco et al., 1982a). We found that tubulin breakdown is heterogeneous, that membrane-bound tubulin is resistant to cathepsin D but susceptible to thrombin (Bracco et al., 1982b), and that cytoplasmic tubulin was in at least two pools, one with a higher, another with a lower, rate of breakdown. The pH optimum of tubulin breakdown by cerebral cathepsin D differed significantly from the pH optimum of hemoglobin breakdown by the same enzyme.These findings showed that the properties of breakdown by a cerebral protease depend on the substrate. To further examine this dependence of properties of breakdown on the substrate, we now report measurements of pH dependence of breakdown of several purified proteins (tubulin, actin, calmodulin, S-100, glial fibrillary acidic protein [GFA]) from brain by cathepsin D preparations from three sources, rat brain, bovine brain, and bovine spleen. We also compare the rate of breakdown of the various proteins with the rate of hemoglobin breakdown.  相似文献   

4.
Phospholipids activate cathepsin D   总被引:1,自引:0,他引:1  
Total lipids as well as phospholipids extracted from the mitochondrial-lysosomal fraction of porcine adrenal cortex activated the lysosomal cathepsin D of this tissue 30- and 40-fold, respectively, with bovine serum albumin as the substrate. Phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol and cardiolipin were found to activate greatly the cathepsin D. The degree of activation ranged from 6-fold by phosphatidyl ethanolamine to 40-fold by cardiolipin at 1 mM, respectively. These results strongly point to the importance of phospholipids in intracellular protein degradation by lysosomal cathepsin D.  相似文献   

5.
Two groups of proteins were isolated from the retina and pigment epithelium of eight-day-old chick embryos. Experiments with suspension cultures of retinal cells demonstrated that only the retinal extracts and the fraction of its acidic proteins can stimulate cell aggregation in vitro. Analysis by the method of high-performance liquid chromatography showed that fractions of acidic and basic retinal proteins, which markedly differ in their electric charge and biological activity, have similar composition. To study the effect of these proteins on the morphological and functional state of pigment epithelium in vitro, a new experimental model is proposed, with the posterior segment of the newt (Pleurodeles waltl) eye used as a test tissue. The fraction of basic proteins isolated from the chick embryonic pigment epithelium stabilized cell differentiation in the newt pigment epithelium. The analyzed proteins proved to be biologically active at extremely low doses, corresponding to 10(-12) M solutions.  相似文献   

6.
ISOLATION AND CHARACTERIZATION OF BOVINE BRAIN CATHEPSIN D   总被引:2,自引:2,他引:0  
Bovine brain cathepsin D was purified 1774-fold with a 19% recovery by affinity chromatography on immobilized pepstatin. Approximately 2 mg of enzyme protein were isolated from 150 g (wet weight) of bovine brain. The enzyme eluted from gel filtration as a single peak with a molecular weight of 40,000–42,000. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the predominant band migrated with a molecular weight of 48,000: however, less distinct bands were also present in the molecular weight ranges of 31,000 and 13,000. The isolated enzyme had isoelectric points over a range of pH 5–7 with 3 major peaks occurring at pH 5.6, 6.1, and 6.6. The amino acid composition of brain cathepsin D showed substantial differences from that reported for cathepsin D isolated from bovine spleen. Amino-terminal sequence analysis revealed an Asp-Val-lle sequence by Edman degradation. With hemoglobin as the substrate the enzyme had an apparent K, of 60mM.  相似文献   

7.
Two groups of proteins were isolated from the retina and pigment epithelium of eight-day-old chick embryos. Experiments with suspension cultures of retinal cells demonstrated that only the retinal extracts and the fraction of its acidic proteins can stimulate cell aggregation in vitro. Analysis by the method of high-performance liquid chromatography showed that fractions of acidic and basic retinal proteins, which markedly differ in their electric charge and biological activity, have similar composition. To study the effect of these proteins on the morphological and functional state of pigment epitheliumin vitro, a new experimental model is proposed, with the posterior segment of the newt (Pleurodeles waltl) eye used as a test tissue. The fraction of basic proteins isolated from the chick embryonic pigment epithelium stabilized cell differentiation in the newt pigment epithelium. The analyzed proteins proved to be biologically active at extremely low doses, corresponding to 10−12 M solutions.  相似文献   

8.
The fatty acid composition of retinal tissues was measured in rats maintained for 26–32 weeks on each of the following diets: a purified basal diet deficient in α-tocopherol and selenium, an identical control diet supplemented with α-tocopherol and selenium, and a commercial laboratory rat chow. Dietary deficiencies of antioxidant nutrients were found to cause a large decrease in total polyunsaturated fatty acids in the retinal pigment epithelium, a small decrease in the retinal rod outer segments, but no change in the whole retina or liver when compared to tissues from animals fed the vitamin E- and selenium-supplemented control diet. The polyunsaturated fatty acid content which we have observed for the retinal pigment epithelium from rats fed commercial lab chow is similar to that which we observed for bovine retinal pigment epithelium.Our results indicate that changes in fatty acid composition are not generalized to all tissues in severely antioxidant-deficient animals, but that changes do occur in some tissues, such as the retinal pigment epithelium, which appears to be particularly sensitive to in vivo lipid peroxidation.  相似文献   

9.
The fatty acid composition of retinal tissues was measured in rats maintained for 26--32 weeks on each of the following diets: a purified basal diet deficient in alpha-tocopherol and selenium, an identical control diet supplemented with alpha-tocopherol and selenium, and a commerical laboratory rat chow. Dietary deficiencies of antioxidant nutrients were found to cause a large decrease in total polyunsaturated fatty acids in the retinal pigment epithelium, a small decrease in the retinal rod outer segments, but no change in the whole retina or liver when compared to tissues from animals fed the vitamin E- and selenium-supplemented control diet. The polyunsaturated fatty acid content which we have observed for the retinal pigment epithelium from rats fed commerical lab chow is similar to that which we observed for bovine retinal pigment epithelium. Our results indicate that changes in fatty acid composition are not generalized to all tissues in severely antioxidant-deficient animals, but that changes do occur in some tissues, such as the retinal pigment epithelium, which appears to be particularly sensitive to in vivo lipid peroxidation.  相似文献   

10.
The rate of degradation of human serum albumin (HuSA) by rabbit cathepsin D, measured on the basis of the amount of degradation products soluble in trichloroacetic acid, was shown to depend on the original concentration of the substrate and on the presence of other proteins in the system. Both human and rabbit IgG decreased the rate of cathepsin degradation of HuSA, whereas bovine haemoglobin, on the contrary, increased the rate of degradation. Immunochemical analysis (i.e. immunoelectrophoresis and radial immunodiffusion) have shown that the mixture of two proteins was degraded at a slower rate than either of these proteins alone. This phenomenon was studied using even a substrate possessing an enzymatic activity (catalase) and it was shown that the presence of a further substrate in the mixture decreased the degree of inactivation of catalase by cathepsin D. It suggests that competition between individual proteins and their fragments takes place in the course of the proteolytic reaction and, in addition, their association also occurs. Therefore the kinetics of catheptic degradation of a mixture of protein antigens is rather complicated. These results are discussed in view of antigen degradation within the cells and mechanism of killing of phagocytosed microorganisms.  相似文献   

11.
1. Renin was purified 30 000-fold from rat kidneys by chromatography on DEAE-cellulose and SP-Sephadex, and by affinity chromatography on pepstatinyl-Sepharose. 2. The enzymatic properties of isorenin from rat brain, pseudorenin from hog spleen, cathepsin D from bovine spleen, and renin from rat kidneys were compared: Isorenin, pseudorenin and cathepsin D generate angiotensin from tetradecapeptide renin substrate with pH optima around 4.9, renin at 6.0. With sheep angiotensinogen as substrate, isorenin, pseudorenin and cathepsin D have similar pH profiles (pH optima at 3.9 and 5.5), in contrast to renin (pH optimum at 6.8). 3. The angiotensin-formation from tetradecapeptide by isorenin, pseudorenin and cathepsin D was inhibited by albumin, alpha-and beta-globulins. These 3 enzymes have acid protease activity at pH 3.2 with hemoglobin as the substrate. Renin is not inhibited by proteins and has no acid protease activity. 4. Renin generates angiotensin I from various angiotensinogens at least 100 000 times faster than isorenin, pseudorenin or cathepsin D, and 3000 000 times faster than isorenin when compared at pH 7.2 with rat angiotensinogen as substrate. 5. The 3 'non-renin' enzymes exhibit a high sensitivity to inhibition by pepstatin (Ki less than 5.10(-10) M), in contrast to renin (Ki approximately 6-10(-7) M), at pH 5.5. 6. It is concluded from the data that isorenin from rat brain and pseudorenin from hog spleen are closely related to, or identical with cathepsin D.  相似文献   

12.
The hydrolysis of phosphatidylinositol 4,5-bisphosphate is regulated by light in retinal rod outer segment (ROS) membranes. We recently reported that the activities of phosphatidylinositol synthetase and phosphatidylinositol 3-kinase are also higher in bleached (light-exposed) ROS (B-ROS). In this study, we investigated the effect of bleaching on diacylglycerol (DAG) kinase (DAG-kinase) activity in bovine and rat ROS membranes prepared from dark-adapted (D-ROS) or bleached (B-ROS) retinas. In bovine ROS, DAG-kinase activity toward endogenous DAG substrate was higher in B-ROS than in D-ROS. Quantification of DAG in both sets of membranes showed that the levels were the same, eliminating the possibility that the greater DAG-kinase activity was due to higher levels of endogenous substrate in B-ROS. DAG-kinase activity was also higher in B-ROS against an exogenous, water-soluable substrate (1, 2-didecanoyl-rac-glycerol), which competed with endogenous DAG substrate and saturated at approximately 2 mM. Immunoblot analysis with an anti-DAG-kinase gamma polyclonal antibody demonstrated that the gamma isoform was present in isolated bovine ROS. Immunocytochemistry of frozen bovine retinal sections confirmed the presence of DAG-kinase gamma immunoreactivity in ROS, as well as other retinal cells. Quantification of the immunoreactive products on western blots showed that more DAG-kinase gamma was present in B-ROS than in D-ROS. In an in vivo experiment, ROS prepared from rats exposed to 30 min of room light had greater DAG-kinase activity than ROS prepared from dark-adapted animals. Taken together, these data suggest that light exposure leads to the translocation of DAG-kinase from the cytosol to ROS membranes and that the greater DAG-kinase activity in B-ROS is due to the presence of more protein associated with ROS membranes.  相似文献   

13.
Endothelin converting enzyme activities in the soluble fraction of cultured bovine aortic endothelial cells were characterized. The two major endothelin converting enzyme activities were eluted from a hydrophobic chromatography column and the elution profile of the endothelin converting enzyme activities was the same as that of cathepsin D activities. These activities had a same pH optimum at pH 3.5 and were effectively inhibited by pepstatin A. Furthermore, anti-cathepsin D antiserum absorbed these activities as well as cathepsin D activity. Immunoblotting analysis using the antiserum showed the major active fractions have immunostainable components of identical molecular weights with cathepsin D. From these results, we concluded that the major endothelin converting activities in the soluble fraction of endothelial cells are due to cathepsin D. In addition to these cathepsin D activities, a minor endothelin converting enzyme activity with an optimum pH at 3.5 was found, which does not have angiotensin I generating (cathepsin D) activity from renin substrate and needs much higher concentrations of pepstatin A to inhibit the activity than cathepsin D.  相似文献   

14.
The recent identification of nonvisual opsins has revealed an expanding family of vertebrate opsin genes. The retinal pigment epithelium (RPE) and Müller cells contain a blue and UV light-absorbing opsin, the RPE retinal G protein-coupled receptor (RGR, or RGR opsin). The spectral properties of RGR purified from bovine RPE suggest that RGR is conjugated in vivo to a retinal chromophore through a covalent Schiff base bond. In this study, the isomeric structure of the endogenous chromophore of RGR was identified by the hydroxylamine derivatization method. The retinaloximes derived from RGR in the dark consisted predominantly of the all-trans isomer. Irradiation of RGR with 470-nm monochromatic or near-UV light resulted in stereospecific isomerization of the bound all-trans-retinal to an 11-cis configuration. The stereospecificity of photoisomerization of the all-trans-retinal chromophore of RGR was lost by denaturation of the protein in SDS. Under the in vitro conditions, the photosensitivity of RGR is at least 34% that of bovine rhodopsin. These results provide evidence that RGR is bound in vivo primarily to all-trans-retinal and is capable of operating as a stereospecific photoisomerase that generates 11-cis-retinal in the pigment epithelium.  相似文献   

15.
The isolated cathepsin D-like enzyme from Atlantic cod (Gadus morhua L.) liver was shown to be a monomer with a molecular mass of approximately 40 kDa. It was inhibited by Pepstatin A and had an optimum for degradation of haemoglobin at pH 3.0. The purified enzyme had lower temperature stability than bovine cathepsin D. Antibodies raised against the purified enzyme and against two C-terminal peptides of cod cathepsin D recognized a 40 kDa protein in immunoblotting of the samples from the purification process. Both antisera showed cross reactivity with a similar sized protein in liver from cod, saithe (Pollachius virens L.), Atlantic herring (Clupea harengus L.) and Atlantic salmon (Salmo salar L.). A protein of same size was detected in wolffish (Anarhichas lupus L.) liver with the antibody directed against the purified enzyme. This antibody also recognized the native enzyme and detected the presence of cathepsin D in muscle of cod, saithe, herring and salmon. These antibodies may be useful in understanding the mechanisms of post mortem muscle degradation in fish by comparing immunohistochemical localization and enzyme activity, in particular in cod with different rate of muscle degradation. They may also be used for comparing muscle degradation in different fish species.  相似文献   

16.
Strong vimentin-degrading activity was found in a mouse myelomonocytic leukemic cell line, M1. When M1 cells were induced to differentiate into macrophage-like cells, this degrading activity decreased, while expression of the vimentin gene increased as reported previously [Tsuru, A., Nakamura, N., Takayama, E., Suzuki, Y., Hirayoshi, K. and Nagata, K. (1990) J. Cell Biol. 110, 1655-1664]. This activity was not due to calpain, which was reported to degrade vimentin, because it was independent of the presence or absence of Ca2+. This activity was revealed to be strongly associated with membranes by differential-centrifugation experiments. To identify this protease, purification of the degradation enzyme was performed. A membrane fraction was prepared and extracted with a buffer containing Triton X-100, then subjected to column chromatography using carboxymethyl-Sepharose and heparin-Sepharose. Quantitative analysis using the purified protease revealed that the specificity of this protease was more than 1000-fold higher for vimentin than for bovine serum albumin, ovalbumin and actin. Four protein bands expressing the activity were finally identified by SDS/PAGE. Amino-terminal sequences of these four proteins were identical, suggesting lower-molecular-mass proteins were degradative products. Furthermore, it was revealed that the sequence had the highest similarity with that of human cathepsin G. This result was consistent with the cathpsin-G-like properties of the purified protease, such as the optimum pH and the specificities for inhibitors. The purified protease degraded a synthetic substrate for cathespin G, succinyl-alanyl-alanyl-prolyl-phenylalanyl-p-nitroanilide, with a comparable specific activity to human cathespin G and was specifically detected with anti-(human cathepsin G) serum in immunoblot analysis. The purified protease thus belongs to the 'cathepsin G family', and perhaps is a mouse homologue of human cathepsin G.  相似文献   

17.
《The Journal of cell biology》1987,105(6):2589-2601
The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes.  相似文献   

18.
RHODOPSIN, the visual pigment of vertebrate rods, has been shown to consist of a chromophore (11-cis retinal) bound to a protein (opsin)1–2. It has been proposed that the linkage is a Schiff base between phosphatidyl ethanolaniine (PE) and retinal and that when exposed to light, the retinal migrates from PE to the ε-amino-group of a lysine residue in opsin3–7. Most of the support for this theory comes from the observation that N-retinylidenephosphatidylethanolamine (N-RPE) can be extracted in the dark from rod outer segments (ROS)3,4. Furthermore, N-retinylphosphatidylethanolamine (N-RH2PE) has been extracted from ROS preparations after treating the visual pigment with acid and NaBH4—conditions which are assumed fix retinal to its “native” binding site through a secondary amine linkage7. All these studies, however, were carried out on crude extracts of ROS in various detergents. These crude extracts contain large amounts of phospholipid and retinal which is not bound to opsin. Thus, the isolation of N-RPE from crude ROS extracts does not necessarily point to its involvement in the binding of retinal to opsin. In contradiction to these reports are findings that purified visual pigment contains no phospholipid9,10 and that the molar concentration of N-RPE in bovine ROS is less than that of rhodopsin11. We have taken advantage of the observation that visual pigment in the outer segment disks is continually being renewed12 to label the rhodopsin with 3H-retinal and to show in yet another way that N-RPE does not exist in purified visual pigment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号