首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cilia in many organisms undergo a phenomenon called ciliary reversal during which the cilia reverse the beat direction, and the cell swims backwards. Ciliary reversal is typically caused by a depolarizing stimulus that ultimately leads to a rise in intraciliary Ca++ levels. It is this increase in intraciliary Ca++ that triggers ciliary reversal. However, the mechanism by which an increase in intraciliary Ca++ causes ciliary reversal is not known. We have previously mutated the DYH6 gene of Tetrahymena thermophila by targeted gene knockout and shown that the knockout mutants (KO6 mutants) are missing inner arm dynein 1 (I1). In this study, we show that KO6 mutants do not swim backward in response to depolarizing stimuli. In addition to being unable to swim backwards, KO6 mutants swim forward at approximately one half the velocity of wild-type cells. However, the ciliary beat frequency in KO6 mutants is indistinguishable from that of wild-type cells, suggesting that the slow forward swimming of KO6 mutants is caused by an altered waveform rather than an altered beat frequency. Live KO6 cells are also able to increase and decrease their swim speeds in response to stimuli, suggesting that some aspects of their swim speed regulation mechanisms are intact. Detergent-permeabilized KO6 mutants fail to undergo Ca++-dependent ciliary reversals and do not show Ca++-dependent changes in swim speed after MgATP reactivation, indicating that the axonemal machinery required for these responses is insensitive to Ca++ in KO6 mutants. We conclude that Tetrahymena inner arm dynein 1 is not only an essential part of the Ca++-dependent ciliary reversal mechanism but it also may contribute to Ca++-dependent changes in swim speed and to the formation of normal waveform during forward swimming.  相似文献   

2.
Calcium-dependent ciliary reversals are seen in ciliated protozoans such as Tetrahymena in response to depolarizing stimuli, but the axonemal mechanisms responsible for this response are not well understood. The model is that the outer arm dyneins (OADs) control the beating frequency while the inner arm dyneins (IADs) regulate ciliary waveform. Since ciliary reversal is a type of waveform change, the model would predict that IAD mutations could affect ciliary reversal. We have used gene disruption techniques to generate several behavioral mutants of Tetrahymena with functional disruptions of various IADs. One such mutant, called KO-6, is missing I1 (the two-headed IAD) and is unable to show ciliary reversals in response to any stimuli due to a loss of axonemal Ca2+ sensitivity [Eur J Cell Biol 80 (2001) 486-497; Cell Motil Cytoskeleton 53 (2002) 281-288.]. In contrast, disruption of 3 one-headed IADs [Liu et al., Cell Motil Cytoskeleton 59 (2004), 201-214] produced mutants, which showed over-responsiveness in bioassays measuring either their depolarization-induced avoiding reactions (AR) in Na+ and Ba2+ solutions or their duration of backward swimming (continuous ciliary reversal or CCR) in K+ solutions. Detergent-extracted and reactivated mutants also showed increased probabilities of CCR at lower Ca2+ concentrations suggesting that the behavioral over-responsiveness of these three mutants in vivo is due to increased axonemal Ca2+ sensitivity. Our data suggest the possibility that the one-headed IADs and the two-headed IAD act antagonistically in vivo and that loss of any one of the one-headed IADs leads to behavioral over-responsiveness due to less resistance to I1-induced reversals.  相似文献   

3.
Oami K  Takahashi M 《Zoological science》2004,21(11):1091-1097
The membrane potential responses of Paramecium caudatum to Na+ ions were examined to understand the mechanisms underlying the sensation of external inorganic ions in the ciliate by comparing the responses of the wild type and the behavioral mutant. Wild-type cells exhibited initial continuous backward swimming followed by repeated transient backward swimming in the Na+-containing test solution. A wild-type cell impaled by a microelectrode produced initial action potentials and a sustained depolarization to an application of the test solution. The prolonged depolarization, the depolarizing afterpotential, took place subsequently after stimulation. The ciliary reversal of the cell was closely associated with the depolarizing responses. When the application of the test solution was prolonged, the wild-type cell produced sustained depolarization overlapped by repeated transient depolarization. A behavioral mutant defective in the Ca2+ channel, CNR (caudatum non reversal), produced a sustained depolarization but no action potential or depolarizing afterpotential. The mutant cell responded to prolonged stimulation with sustained depolarization overlapped by transient depolarization, although it did not show backward swimming. The results suggest that Paramecium shows at least two kinds of membrane potential responses to Na+ ions: a depolarizing afterpotential mediating initial backward swimming and repeated transient depolarization responsible for the repeated transient backward swimming.  相似文献   

4.
In many organisms, depolarizing stimuli cause an increase in intraciliary Ca2+, which results in reversal of ciliary beat direction and backward swimming. The mechanism by which an increase in intraciliary Ca2+ causes ciliary reversal is not known. Here we show that Tetrahymena cells treated with okadaic acid or cantharidin to inhibit protein phosphatases do not swim backwards in response to depolarizing stimuli. We also show that both okadaic acid and cantharidin inhibit backward swimming in reactivated, extracted cell models treated with Ca2+. In contrast, treatment of whole cells or extracted cell models with protein kinase inhibitors has no effect on backward swimming. These results suggest that a component of the axonemal machinery is dephosphorylated during ciliary reversal. The phosphorylation state of inner arm dynein 1 (I1) was determined before and after cells were exposed to depolarizing conditions that induce ciliary reversal. An I1 intermediate chain is phosphorylated in forward swimming cells but is dephosphorylated in cells treated with a depolarizing stimulus. Our results suggest that dephosphorylation of Tetrahymena inner arm dynein 1 may be an essential part of the mechanism of ciliary reversal in response to increased intraciliary Ca2+.  相似文献   

5.
Summary A new mutant ofParamecium tetraurelia, k-shyA, was characterized behaviorally and electrophysiologically. The mutant cell exhibited prolonged backward swimming episodes in response to depolarizing conditions. Electrophysiological comparison of k-shyA with wild type cells under voltage clamp revealed that the properties of three Ca2+-regulated currents were altered in the mutant. (i) The voltage-dependent Ca2+ current recovered from Ca2+-dependent inactivation two- to 10-fold more slowly than wild type. Ca2+ current amplitudes were also reduced in the mutant, but could be restored by EGTA injection. (ii) The decay of the Ca2+-dependent K+ tail current was slower in the mutant. (iii) The decay of the Ca2+-dependent Na+ tail current was also slower in the mutant. All other membrane properties studied, including the resting membrane potential and resistance and the voltage-sensitive K+ currents, were normal in k-shyA. Considered together, these observations are consistent with a defect in the ability of k-shyA to reduce the free intracellular Ca2+ concentration following stimulation. The possible targets of the genetic lesion and alternative explanations are discussed. The k-shy mutants may provide a useful tool for molecular and physiological analyses of the regulation of Ca2+ metabolism inParamecium.  相似文献   

6.
Paramecium generates a Ca2+ action potential and can be considered a one-cell animal. Rises in internal [Ca2+] open membrane channels that specifically pass K+, or Na+. Mutational and patch-clamp studies showed that these channels, like enzymes, are activated by Ca(2+)-calmodulin. Viable CaM mutants of Paramecium have altered transmembrane currents and easily recognizable eccentricities in their swimming behavior, i.e. in their responses to ionic, chemical, heat, or touch stimuli. Their CaMs have amino-acid substitutions in either C- or N-terminal lobes but not the central helix. Surprisingly, these mutations naturally fall into two classes: C-lobe mutants (S101F, I136T, M145V) have little or no Ca(2+)-dependent K+ currents and thus over-react to stimuli. N-lobe mutants (E54K, G40E+D50N, V35I+D50N) have little or no Ca(2+)-dependent Na+ current and thus under-react to certain stimuli. Each mutation also has pleiotropic effects on other ion currents. These results suggest a bipartite separation of CaM functions, a separation consistent with the recent studies of Ca(2+)-ATPase by Kosk-Kosicka et al. [41, 55]. It appears that a major function of Ca(2+)-calmodulin in vivo is to orchestrate enzymes and channels, at or near the plasma membrane. The orchestrated actions of these effectors are not for vegetative growth at steady state but for transient responses to stimuli epitomized by those of electrically excitable cells.  相似文献   

7.
Two mutants of Paramecium tetraurelia with greatly reduced Ca2+-dependent K+ currents have been isolated and genetically analyzed. These mutants, designated pantophobiac, give much stronger behavioral responses to all stimuli than do wild-type cells. Under voltage clamp, the Ca2+-dependent K+ current is almost completely eliminated in these mutants, whereas the Ca2+ current is normal. The two mutants, pntA and pntB, are recessive and unlinked to each other. pntA is not allelic to several other ion-channel mutants of P. tetraurelia. The microinjection of a high-speed supernatant fraction of wild-type cytoplasm into either pantophobiac mutant caused a temporary restoration to the wild-type phenotype.  相似文献   

8.
Membrane potential responses of Paramecium caudatum to an application of K+-rich solution were examined to understand the mechanisms underlying K+-induced backward swimming. A wild-type cell impaled by a microelectrode produced action potentials followed by a sustained depolarization in response to an application of a K+-rich test solution. After termination of the application, a prolongation of the depolarization (depolarizing after-potential) took place. Behavioral mutants incapable of exhibiting K+-induced backward swimming did not show depolarizing afterpotentials. Upon short application of K+-rich solution, the timing and duration of the ciliary reversal of the wild-type cell coincided well with the K+-induced depolarization. The duration of the depolarizing afterpotential decreased as the duration of the application increased. The depolarizing afterpotential recovered slowly after it had been suppressed by a preceding application of the K+-rich solution. By injection of an outward current into the wild-type cell, the action potentials were evoked normally during the period when the K+-induced depolarizing afterpotential was suppressed. We concluded that the prolongation of the depolarizing membrane potential response following the application of the K+-rich solution represents the Ca2+ conductance responsible for the K+-induced backward swimming in P. caudatum and that the characteristics of the K+-induced Ca2+ conductance are distinct from those of the Ca2+ conductance responsible for the action potentials.  相似文献   

9.
The ciliated protozoan, Paramecium, broadcasts the activity of its individual ion channel classes through its swimming behaviour. This fact has made it possible to isolate mutants with defective ion currents, simply by selecting individuals with abnormal swimming patterns. At least four of Paramecium's ion currents are activated by rising intracellular calcium concentration, including two K+ currents and a Na+ current. A variety of cell lines with defects in these Ca2(+)-dependent currents have been isolated: in several cases, the defects have been traced to mutations in the structural gene for calmodulin. Sequence analysis of calmodulins from these and other Ca2(+)-dependent ion-current mutants may enable a detailed mapping of putative channel interaction domains on the surface of the calmodulin molecule.  相似文献   

10.
The "paranoiac" mutants of Paramecium aurelia show prolonged backward swimming in solutions containing Na+, unlike wild-type paramecia, which jerk back and forth in Na+ solutions. The paranoiac mutants in Na+ solutions also show large losses of cellular K+ and large influxes of Na+. Three different paranoiac mutants all show similar defects in ion regulation but to different degrees. Wild-type Paramecium, in contrast, shows no Na+ -dependent loss of cellular K+ and a much smaller Na+ influx. In K+ -containing solutions, there is no difference between wild-type and paranoiac paramecia with respect to their cellular K+ content. The Na+ influx, the K+ loss, and the duration of backward swimming are all proportional to the extracellular Na+ concentration. Electrophysiologically, the backward swimming of the paranoiac mutants corresponds to a prolonged depolarization of the membrane potential, while the backward jerks of wild-type Paramecium correspond to a series of transient depolarizations. We propose that the large Na+ influxes and the large K+ effluxes in paranoiacs occur during the periods of backward swimming, while the membrane is depolarized.  相似文献   

11.
S Klumpp  P Cohen    J E Schultz 《The EMBO journal》1990,9(3):685-689
Backward swimming is a stereotypic behavioural response of Paramecium. It is triggered by depolarizing stimuli, which open calcium channels in the excitable ciliary membrane. The influx of Ca2+ causes the reversal of ciliary beat and initiates backward swimming. Here, we demonstrate that the protein phosphatase inhibitor okadaic acid does not affect the normal forward swimming pattern of Paramecium, but greatly extends the duration of backward swimming as initiated by depolarization caused by a rise in extracellular K+. Chelation of external Ca2+ results in an immediate resumption of forward swimming. The results suggest that the voltage-operated calcium channel is inactivated by a dephosphorylation event, and that okadaic acid blocks this dephosphorylation without any effect on the motile apparatus of the cilia. In addition, Paramecium is unique among eukaryotic cells, in that okadaic acid inhibits just one protein phosphatase, namely a type 1 enzyme, 75% of which is tightly associated with the excitable ciliary membrane. The type 2A protein phosphatases in Paramecium are unaffected by okadaic acid. The results indicate that protein phosphatase 1 is the enzyme responsible for the dephosphorylation and closure of the calcium channel in Paramecium.  相似文献   

12.
Messenger role of calcium in ciliary electromotor coupling: A reassessment   总被引:1,自引:0,他引:1  
Y. Mogami  J. Pernberg  H. Machemer   《Cell calcium》1990,11(10):665-673
Electrophysiological and cell reactivation studies in Paramecium and other ciliates have established that depolarizing stimulation opens voltage-sensitive ciliary Ca2+ channels leading to an elevation in intraciliary Ca2+, a rapid 'reversal' in sliding-microtubule based ciliary activity and backward swimming. Regulation of cilia by hyperpolarization modulates the pitch and rate of forward locomotion. The control of this predominant behaviour has been a matter of controversy because ciliary conductances do not change with negative shifts from the resting potential. Recordings of ciliary responses during electrophysiological manipulation of the Ca driving force in the ciliates Stylonychia and Didinium now suggests that a crucial step in hyperpolarization-induced ciliary activation (HCA) is a reduction in intraciliary Ca2+ from a resting steady-state level. The data are discussed with respect to previous hypotheses for the regulation of HCA.  相似文献   

13.
Calcineurin, or PP2B, plays a critical role in mediating Ca2+-dependent signaling in many cell types. In yeast cells, this highly conserved protein phosphatase regulates aspects of ion homeostasis and cell wall synthesis. We show that calcineurin mutants are sensitive to high concentrations of Mn2+ and identify two genes, CCC1 and HUM1, that, at high dosages, increase the Mn2+ tolerance of calcineurin mutants. CCC1 was previously identified by complementation of a Ca2+-sensitive (csg1) mutant. HUM1 (for "high copy number undoes manganese") is a novel gene whose predicted protein product shows similarity to mammalian Na+/Ca2+ exchangers. hum1 mutations confer Mn2+ sensitivity in some genetic backgrounds and exacerbate the Mn2+ sensitivity of calcineurin mutants. Furthermore, disruption of HUM1 in a calcineurin mutant strain results in a Ca2+-sensitive phenotype. We investigated the effect of disrupting HUM1 in other strains with defects in Ca2+ homeostasis. The Ca2+ sensitivity of pmc1 mutants, which lack a P-type ATPase presumed to transport Ca2+ into the vacuole, is exacerbated in a hum1 mutant strain background. Also, the Ca2+ content of hum1 pmc1 cells is less than that of pmc1 cells. In contrast, the Ca2+ sensitivity of vph1 mutants, which are specifically defective in vacuolar acidification, is not significantly altered by disruption of Hum1p function. These genetic interactions suggest that Hum1p may participate in vacuolar Ca2+/H+ exchange. Therefore, we prepared vacuolar membrane vesicles from wild-type and hum1 cells and compared their Ca2+ transport properties. Vacuolar membrane vesicles from hum1 mutants lack all Ca2+/H+ antiport activity, demonstrating that Hum1p catalyzes the exchange of Ca2+ for H+ across the yeast vacuolar membrane.  相似文献   

14.
Three mutant strains of Paramecium tetraurelia with an enhanced sensitivity to magnesium have been isolated. These new ``Chameleon' mutants result from partial- or codominant mutations at a single locus, Cha. Whereas the wild type responded to 5 mM Mg(2+) by swimming backward for 10-15 sec, Cha mutants responded with ~30 sec backward swimming. Electrophysiological analysis suggested that this behavior may be caused by slowing in the rate at which a Mg(2+)-specific ion conductance deactivates following membrane excitation. This would be consistent with an observed increase in the sensitivity of Cha mutants to nickel poisoning, since Ni(2+) is also able to enter the cell via this pathway. More extensive behavioral analysis showed that Cha cells also overresponded to Na(+), but there was no evidence for a defect in intracellular Ca(2+) homeostasis that might account for a simultaneous enhancement of both the Mg(2+) and Na(+) conductances. The possibility that the Cha locus may encode a specific regulator of the Mg(2+)- and Na(+)-permeabilities is considered.  相似文献   

15.
A ciliated protozoan, Halteria grandinella, swam backward rapidly with a migration distance per second attaining 100 times the cell size. This high swimming velocity was accompanied by a high frequency of ciliary beating. Recordings with a high-speed digital video (10(3) frames/s) revealed that the frequency during forward and backward swimming was, respectively, 105 +/- 10 Hz and 260 +/- 30 Hz. These frequencies are the highest among cilia and flagella reported to date. Electron microscopic observation of the ciliary structure confirmed normal 9 + 2 arrangements of the axoneme except that cilia for migration are bundled into membranelles. Ciliary beating of saponin-treated cells was reactivated by the addition of Mg2+ -ATP, although the beating amplitude was smaller than that of intact cells. Kinetic analysis of the ATP-dependent increase of beating frequency revealed that the maximal frequency in the presence of free Ca2+ and 0.9 microM Ca2+ was approximately 60 and 110 Hz, respectively. A possible mechanism to increase beating frequency with Ca2+ is discussed.  相似文献   

16.
Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disease caused by mutations in protein kinase Cgamma (PKCgamma). Interestingly, 18 of 22 mutations are concentrated in the C1 domain, which binds diacylglycerol and is necessary for translocation and regulation of PKCgamma kinase activity. To determine the effect of these mutations on PKCgamma function and the pathology of SCA14, we investigated the enzymological properties of the mutant PKCgammas. We found that wild-type PKCgamma, but not C1 domain mutants, inhibits Ca2+ influx in response to muscarinic receptor stimulation. The sustained Ca2+ influx induced by muscarinic receptor ligation caused prolonged membrane localization of mutant PKCgamma. Pharmacological experiments showed that canonical transient receptor potential (TRPC) channels are responsible for the Ca2+ influx regulated by PKCgamma. Although in vitro kinase assays revealed that most C1 domain mutants are constitutively active, they could not phosphorylate TRPC3 channels in vivo. Single molecule observation by the total internal reflection fluorescence microscopy revealed that the membrane residence time of mutant PKCgammas was significantly shorter than that of the wild-type. This fact indicated that, although membrane association of the C1 domain mutants was apparently prolonged, these mutants have a reduced ability to bind diacylglycerol and be retained on the plasma membrane. As a result, they fail to phosphorylate TRPC channels, resulting in sustained Ca2+ entry. Such an alteration in Ca2+ homeostasis and Ca2+-mediated signaling in Purkinje cells may contribute to the neurodegeneration characteristic of SCA14.  相似文献   

17.
Paramecium tetraurelia responds to extracellular GTP (≥ 10 nm) with repeated episodes of prolonged backward swimming. These backward swimming events cause repulsion from the stimulus and are the behavioral consequence of an oscillating membrane depolarization. Ion substitution experiments showed that either Mg2+ or Na+ could support these responses in wild-type cells, with increasing concentrations of either cation increasing the extent of backward swimming. Applying GTP to cells under voltage clamp elicited oscillating inward currents with a periodicity similar to that of the membrane-potential and behavioral responses. These currents were also Mg2+- and Na+-dependent, suggesting that GTP acts through Mg2+-specific (I Mg) and Na+-specific (I Na) conductances that have been described previously in Paramecium. This suggestion is strengthened by the finding that Mg2+ failed to support normal behavioral or electrophysiological responses to GTP in a mutant that specifically lacks I Mg (``eccentric'), while Na+ failed to support GTP responses in ``fast-2,' a mutant that specifically lacks I Na. Both mutants responded normally to GTP if the alternative cation was provided. As I Mg and I Na are both Ca2+-dependent currents, the characteristic GTP behavior could result from oscillations in intracellular Ca2+ concentration. Indeed, applying GTP to cells in the absence of either Mg2+ or Na+ revealed a minor inward current with a periodicity similar to that of the depolarizations. This current persisted when known voltage-dependent Ca2+ currents were blocked pharmacologically or genetically, which implies that it may represent the activation of a novel purinergic-receptor–coupled Ca2+ conductance. Received: 28 October 1996/Revised: 24 December 1996  相似文献   

18.
Vibrio parahaemolyticus synthesizes two distinct flagellar organelles, the polar flagellum (Fla), which propels the bacterium in a liquid environment (swimming), and the lateral flagella (Laf), which are responsible for movement over surfaces (swarming). Chemotactic control of each of these flagellar systems was evaluated separately by analyzing the behavioral responses of strains defective in either motility system, i.e., Fla+ Laf- (swimming only) or Fla- Laf+ (swarming only) mutants. Capillary assays, modified by using viscous solutions to measure swarming motility, were used to quantitate chemotaxis by the Fla+ Laf- or Fla- Laf+ mutants. The behavior of the mutants was very similar with respect to the attractant compounds and the concentrations which elicited responses. The effect of chemotaxis gene defects on the operation of the two flagellar systems was also examined. A locus previously shown to encode functions required for chemotactic control of the polar flagellum was cloned and mutated by transposon Tn5 insertion in Escherichia coli, and the defects in this locus, che-4 and che-5, were then transferred to the Fla+ Laf- or Fla- Laf+ strains of V. parahaemolyticus. Introduction of the che mutations into these strains prevented chemotaxis into capillary tubes and greatly diminished movement of bacteria over the surface of agar media or through semisolid media. We conclude that the two flagellar organelles, which consist of independent motor-propeller structures, are directed by a common chemosensory control system.  相似文献   

19.
20.
An fls1 mutant of Saccharomyces cerevisiae, which did not grow in the presence of 30 micrograms of fluphenazine per ml, was isolated. Mutants that were resistant to 90 micrograms of fluphenazine per ml and temperature sensitive for growth were obtained from the fls1 mutant. One fluphenazine-resistance mutation, fsr1, was located near the his7 locus on chromosome II. Growth of the fsr1 mutants at 35 degrees C was arrested after nuclear division. The other group of fluphenazine-resistant mutants, carrying fsr2 mutations, showed Ca2+-dependent growth at 35 degrees C. Growth of the fsr2 mutants at 35 degrees C was arrested at the G2 stage of the cell cycle in Ca2+-poor medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号