首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The incubation of horseradish peroxidase C (HRPC) with millimolar concentrations of nickel, at room temperature and at pH 4.0, induced the progressive formation of a metal-enzyme complex characterized by alterations of the enzyme Soret absorption band that were time- as well as nickel concentration- dependent. For any given incubation period between 1 and 60 min, 2 values for the apparent dissociation constant (K(d)) were found, suggesting the presence of binding sites with different affinities for nickel. The value of each K(d) dropped as the incubation time increased, indicating a progressive stabilization of the metal-enzyme complex. Hill plots suggested a cooperative binding of up to four Ni2+ ions per molecule of HRPC. The inhibition of the enzymatic activity by nickel was studied by following the H2O2-mediated oxidation of o-dianisidine by HRPC under steady-state kinetic conditions. Ni2+ was found to be either a noncompetitive or a mixed inhibitor of HRPC depending both on the duration of preincubation with the enzyme and on Ni2+ concentration. The enzyme remained active only over a limited metal concentration range and data indicated that binding of one Ni2+ affected the substrate binding site, binding of a second Ni2+ affected both substrate and peroxide binding sites, and binding of more than 2 Ni2+ per HRPC molecule led to complete loss of enzymatic activity. Results pointed to the damaging effects of prolonged exposure to heavy metals and also to the existence of a critical metal concentration beyond which immediate abolishing of enzymatic activity was observed.  相似文献   

2.
The effect of cobalt ions (Co2+) on horseradish peroxidase (HRP) was studied in vitro by enzymatic activity assay, electronic absorption spectra, intrinsic fluorescence spectra and 8-anilo-1-naphthalenesulfonate(ANS)-binding fluorescence spectra. Co2+ at concentrations below 0.1 mM mildly increased the HRP activity, whereas higher concentrations of Co2+ significantly inactivated HRP in a time and concentration-dependent manner. Steady-state kinetic studies show that Co2+ was a noncompetitive inhibitor of o-dianisidine oxidation by HRP. The Ki value dropped as the incubation time increased. Furthermore, Co2+ was found to be an uncompetitive inhibitor of H2O2. These results suggested that Co2+ would slowly bind to the enzyme and progressively induce conformational changes. Spectroscopic analysis showed that even for high Co2+ concentrations, the structure of HRP as a whole only changed slightly; however, there were significant conformational changes near or in the active site of HRP. Based on the above results, we suggest that Co2+ may bind with some amino acids near or in the active site of HRP and the conformational changes of HRP induced by such binding should be the main reason for activation and inactivation effect of Co2+. The potential binding sites of Co2+ were also proposed.  相似文献   

3.
We performed a multi-step analysis of the inhibition of jack bean urease by Hg(2+) ions that included residual activity measurements after incubation of the enzyme with the metal ion, reactivation of Hg(2+)-inhibited urease, protection of urease with thiol reagents prior to incubation with Hg(2+), progress curve analysis, and spectroscopic assay of thiol groups in urease-Hg(2+) complexes with a cysteine selective agent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Hg(2+) ions were found to form stable complexes with urease that could rapidly be reversed only by the treatment with dithiotreitol, and not by dilution or dialysis. The residual activity data interpreted in terms of the Hill equation revealed the multisite Hg(2+) inhibition of urease, and along with the DTNB thiol-assay they demonstrated the involvement in the reaction with Hg(2+) of six cysteine residues per enzyme subunit, including the active-site flap cysteine. The molar ratios of the inhibitor and enzyme imply that the inhibition consists of the formation of RSHgX complexes, X being a water molecule or an anion. The time-dependent Hg(2+) inhibitory action on urease determined in the system without enzyme preincubation was best described by slow-binding mechanism with the steady-state inhibition constant K(i) = 1.9 nM (+/-10%).  相似文献   

4.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   

5.
C H Pedemonte  J H Kaplan 《Biochemistry》1988,27(20):7966-7973
Treatment of purified renal Na,K-ATPase with dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) produces both reversible and irreversible inhibition of the enzyme activity. The reversible inhibition is unaffected by the presence of saturating concentrations of the sodium pump ligands Na+,K+, Mg2+, and ATP, while the inactivation is prevented by either ATP or K+. The kinetics of protection against inactivation indicate that K+ binds to two sites on the enzyme with very different affinities. Na+ ions with high affinity facilitate the inactivation by H2DIDS and prevent the protective effect of K+ ions. The H2DIDS-inactivated enzyme no longer exhibits a high-affinity nucleotide binding site, and the covalent binding of fluorescein isothiocyanate is also greatly reduced, but phosphorylation by Pi is unaffected. The kinetics of inactivation by H2DIDS were first order with respect to time and H2DIDS concentration. The enzyme is completely inactivated by the covalent binding of one H2DIDS molecule at pH 9 per enzyme phosphorylation site, or two H2DIDS molecules at pH 7.2. H2DIDS binds exclusively to the alpha-subunit of the Na,K-ATPase, locking the enzyme in an E2-like conformation. The profile of radioactivity, following trypsinolysis and SDS-PAGE, showed H2DIDS attachment to a 52-kDa fragment which also contains the ATP binding site. These results suggest that H2DIDS treatment modifies a specific conformationally sensitive amino acid residue on the alpha-subunit of the Na,K-ATPase, resulting in the loss of nucleotide binding and enzymatic activity.  相似文献   

6.
ALA-D (EC 4.2.1.24) is the first cytosolic enzyme in the haem metabolic pathway. Some metals compete with its major cofactor Zn(2+), modifying both enzyme structure and function. Our purpose was to contribute to the understanding of the biochemical role of metals such as Pb(2+), Cd(2+), Cu(2+), Mg(2+), Zn(2+), Na(+), K(+) and Li(+) on ALA-D, using chicken embryos as experimental model. Mg(2+) and Zn(2+) showed enzyme activation in yolk sac membrane (YSM) (113% at 10(-5) M Mg(2+) and from 10(-4) M Zn(2+)), and slight inactivation in liver. Cd(2+) and Cu(2+) caused a non allosteric inhibition in both tissues (100% from 10(-4) M). Surprisingly Pb(2+) was not such a strong inhibitor. Interference of cations during the Schiff base formation in enzymatic catalysis process is explained considering their Lewis acid-base capacity, coordination geometry and electron configuration of valence. Interactions among monovalent cations and biochemical substances are governed chiefly by its electrostatic potential. 0.1 M K(+) and 0.4 M Na(+) produced 30% of enzymatic inhibition by the interference on interactions among the functional subunits. Li(+) activated the YSM enzyme (130% at 10(-5) M) due to a more specific interaction. This study may contribute to elucidate for the first time the possible structural differences between the YSM and liver enzymes from chicken embryo.  相似文献   

7.
Selective modification of primary amino groups of (Na+ + K+)-ATPase by trinitrobenzene sulfonic acid (TNBS) resulted in a considerable inhibition of the specific activity of the enzyme. Investigation by means of enzyme and sorption kinetics of activation of heart sarcolemmal (Na+ + K+)-ATPase by its monovalent cationic ligands added simultaneously with TNBS revealed: a considerable competition between K+-ions and TNBS for the potassium binding site on the enzyme molecule; a non-competitive type of inhibition of Na+-induced activation of the enzyme. Both, potassium and sodium ions depressed, and magnesium ions enhanced the initial rate of TNBS-sorption; however, none of the above cations influenced the equilibrium value of TNBS sorption onto isolated sarcolemmal membranes. Ouabain, on the other hand, did not inhibit the initial rate and decreased the equilibrium value of TNBS sorption onto the membranes. The results obtained enabled the identification of an essential amino group in the potassium binding site of the (Na+ + K+)-ATPase molecule.  相似文献   

8.
All kinases require an essential divalent metal for their activity. In this study, we investigated the metal dependence of cyclin-dependent kinase 4 (CDK4). With Mg(2+) as the essential metal and MgATP being the variable substrate, the maximum velocity, V, was not affected by changes in metal concentration, whereas V/K was perturbed, indicating that the metal effects were mainly derived from a change in the K(m) for MgATP. Analysis of the metal dependence of initial rates according to a simple metal binding model indicated the presence on enzyme of one activating metal-binding site with a dissociation constant, K(d(a)), of 5 +/-1 mM, and three inhibitory metal-binding sites with an averaged dissociation constant, K(d(i)), of 12+/-1 mM and that the binding of metal to the activating and inhibitory sites appeared to be ordered with binding of metal to the activating site first. Substitution of Mn(2+) for Mg(2+) yielded similar metal dependence kinetics with a value of 1.0+/-0.1 and 4.7+/-0.1 for K(d(a)) and K(d(i)), respectively. The inhibition constants for the inhibition of CDK4 by MgADP and a small molecule inhibitor were also perturbed by Mg(2+). K(d(a)) values estimated from the metal variation of the inhibition of CDK4 by MgADP (6+/-3 mM) and a small molecule inhibitor (3+/-1 mM), were in good agreement with the K(d(a)) value (5+/-1 mM) obtained from the metal variation of the initial rate of CDK4. By using the van't Hoff plot, the temperature dependence of K(d(a)) and K(d(i)) yielded an enthalpy of -6.0 +/- 1.1 kcal/mol for binding of Mg(2+) to the activating site and -3.2 +/- 0.6 kcal/mol for Mg(2+) binding to the inhibitory sites. The values of associated entropy were also negative, indicating that these metal binding reactions were entirely enthalpy-driven. These data were consistent with metal binding to multiple sites on CDK4 that perturbs the enzyme structure, modulates the enzyme activity, and alters the affinities of inhibitor for the metal-bound enzyme species. However, the affinities of small molecule inhibitors for CDK4 were not affected by the change of metal from Mg(2+) to Mn(2+), suggesting that the structures of enzyme-Mg(2+) and enzyme-Mn(2+) were similar.  相似文献   

9.
Treatment of hepatic microsomes with Fe(3+)/ascorbate activates UDP-glucuronyltransferase (UGT), a phenomenon totally prevented and reversed by reducing agents. At microM concentrations, iron and copper ions catalyze the formation of ROS through Fenton and/or Haber-Weiss reactions. Unlike iron ions, indiscriminate binding of copper ions to thiol groups of proteins different from the specialized copper-binding proteins may occur. Thus, we hypothesize that incubation of hepatic microsomes with the Cu(2+)/ascorbate system will lead to both UGT oxidative activation and Cu(2+)-binding induced inhibition, simultaneously. We studied the effects of Cu(2+) alone and in the presence of ascorbate on rat liver microsomal UGT activity. Our results show that the effects of both copper alone and in the presence of ascorbate were copper ion concentration- and incubation time-dependent. At very low Cu(2+) (25nM), this ion did not modify UGT activity. In the presence of ascorbate, however, UGT activity was increased. At higher copper concentrations (10 and 50microM), this ion led to UGT activity inhibition. In the presence of ascorbate, 10microM Cu(2+) activated UGT at short incubation periods but inhibited this enzyme at longer incubation times; 50microM Cu(2+) only inhibited UGT activity. Thiol reducing agent 2,4-dithiothreitol prevented and reversed UGT activation while EDTA prevented both, UGT activation and inhibition. Our results are consistent with a model in which Cu(2+)-induced oxidation of UGT leads to the activation of the enzyme, while Cu(2+)-binding leads to its inhibition. We discuss physiological and pathological implications of these findings.  相似文献   

10.
Zheng L  Li M  Shan J  Krishnamoorthi R  Shen B 《Biochemistry》2002,41(32):10323-10331
Removal of flap DNA intermediates in DNA replication and repair by flap endonuclease-1 (FEN-1) is essential for mammalian genome integrity. Divalent metal ions, Mg(2+) or Mn(2+), are required for the active center of FEN-1 nucleases. However, it remains unclear as to how Mg(2+) stimulates enzymatic activity. In the present study, we systemically characterize the interaction between Mg(2+) and murine FEN-1 (mFEN-1). We demonstrate that Mg(2+) stimulates mFEN-1 activity at physiological levels but inhibits the activity at concentrations higher than 20 mM. Our data suggest that mFEN-1 exists as a metalloenzyme in physiological conditions and that each enzyme molecule binds two Mg(2+) ions. Binding of Mg(2+) to the M1 binding site coordinated by the D86 residue cluster enhances mFEN-1's capability of substrate binding, while binding of the metal to the M2 binding site coordinated by the D181 residue cluster induces conformational changes. Both of these steps are needed for catalysis. Weak, nonspecific Mg(2+) binding is likely responsible for the enzyme inhibition at high concentrations of the cation. Taken together, our results suggest distinct roles for two Mg(2+) binding sites in the regulation of mFEN-1 nuclease activities in a mode different from the "two-metal mechanism".  相似文献   

11.
The Mg(2+)-dependent (Na(+),K(+))ATPase maintains several cellular processes and is essential for cell excitability. In view of the importance of the enzyme activity, the interaction and binding affinities to substrates and metal ions have been studied. We determined the effect of Zinc ion (Zn(2+)) on the (Na(+),K(+))ATPase activity present in both conducting (non-innervated) and post-synaptic (innervated) membranes of electrocyte from Electrophorus electricus (L.). Zn(2+) is involved in many biological functions and is present in pre-synaptic nerve terminals. This metal, which has affinity for thiol groups, acted as a potent competitive inhibitor of (Na(+),K(+))ATPase of both membrane fractions, which were obtained by differential centrifugation of the E. electricus main electric organ homogenate. We tried to recover the enzyme activity using dithiothreitol, a reducing agent. Kinetic analysis showed that dithiothreitol acted as a non-essential non-competitive activator of (Na(+),K(+))ATPase from both membrane fractions and was able to revert the Zn(2+) inhibition at mM concentrations. In the presence of dithiothreitol, this metal behaved as a competitive inhibitor of (Na(+),K(+))ATPase in the non-innervated membrane fractions and presented a non-competitive inhibition of (Na(+),K(+))ATPase in innervated membrane fractions. This difference may be attributed to formation of a Zn-dithiothreitol complex, as well as the involvement of other binding sites for both agents. The consequences of the enzyme inhibition by Zn(2+) may be considered in regard to its neurotoxic effects.  相似文献   

12.
Dipeptidyl peptidase IV is an ectopeptidase with multiple physiological roles including the degradation of incretins, and a target of therapies for type 2 diabetes mellitus. Divalent cations can inhibit its activity, but there has been little effort to understand how they act. The intact membrane-bound form of porcine kidney dipeptidyl peptidase IV was purified by a simple and fast procedure. The purified enzyme hydrolyzed Gly-Pro-p-nitroanilide with an average V(max) of 1.397±0.003 μmol min(-1) mL(-1), k(cat) of 145.0±1.2 s(-1), K(M) of 0.138±0.005 mM and k(cat)/K(M) of 1050 mM(-1) s(-1). The enzyme was inhibited by bacitracin, tosyl-L-lysine chloromethyl ketone, and by the dipeptidyl peptidase IV family inhibitor L-threo-Ile-thiazolidide (K(i) 70 nM). The enzyme was inhibited by the divalent ions Ca(2+), Co(2+), Cd(2+), Hg(2+) and Zn(2+), following kinetic mechanisms of mixed inhibition, with K(i) values of 2.04×10(-1), 2.28×10(-2), 4.21×10(-4), 8.00×10(-5) and 2.95×10(-5) M, respectively. According to bioinformatic tools, Ca(2+) ions preferentially bound to the β-propeller domain of the porcine enzyme, while Zn(2+) ions to the α-β hydrolase domain; the binding sites were strikingly conserved in the human enzyme and other homologues. The functional characterization indicates that porcine and human homologues have very similar functional properties. Knowledge about the mechanisms of action of divalent cations may facilitate the design of new inhibitors.  相似文献   

13.
Characterization of the zinc binding site of bacterial phosphotriesterase.   总被引:5,自引:0,他引:5  
The bacterial phosphotriesterase has been found to require a divalent cation for enzymatic activity. This enzyme catalyzes the detoxification of organophosphorus insecticides and nerve agents. In an Escherichia coli expression system significantly higher concentrations of active enzyme could be produced when 1.0 mM concentrations of Mn2+, Co2+, Ni2+, and Cd2+ were included in the growth medium. The isolated enzymes contained up to 2 equivalents of these metal ions as determined by atomic absorption spectroscopy. The catalytic activity of the various metal enzyme derivatives was lost upon incubation with EDTA, 1,10-phenanthroline, and 8-hydroxyquinoline-5-sulfonic acid. Protection against inactivation by metal chelation was afforded by the binding of competitive inhibitors, suggesting that at least one metal is at or near the active site. Apoenzyme was prepared by incubation of the phosphotriesterase with beta-mercaptoethanol and EDTA for 2 days. Full recovery of enzymatic activity could be obtained by incubation of the apoenzyme with 2 equivalents of Zn2+, Co2+, Ni2+, Cd2+, or Mn2+. The 113Cd NMR spectrum of enzyme containing 2 equivalents of 113Cd2+ showed two resonances at 120 and 215 ppm downfield from Cd(ClO4)2. The NMR data are consistent with nitrogen (histidine) and oxygen ligands to the metal centers.  相似文献   

14.
The properties of a digestive lipase from the larval midgut of Pieris brassicae were studied by performing biochemical purification, characterization, effect of host plants, and extracted inhibitors. The purification process revealed a lipase with a purification fold of 42, recovery of 18.12%, molecular weight mass of 72.3 kDa, optimal pH at 11, and optimal temperature at 30°C, as well as stability at the optimal temperature for 12 h. The purified enzyme was inhibited by the ions Na(+) , Mn(+) , Fe(2+) , and Cu(2+) and the inhibitors SDS, EDTA, TTHA, and mercaptoethanol. Ca(2+) and Mg(2+) increased activity of the purified lipase, but urea, PMSF, EGTA, and DTC had no effect on enzymatic activity. Feeding of larvae on three host plants, Trepaeolus majus, Brassica olearcea var. alba, and B. olearcea var. rubra revealed the highest lipase activity on T. majus, but the two varieties of B. olearcea significantly decreased lipase activity. Extraction of a crude inhibitor from two varieties of B. olearcea demonstrated that the crude inhibitor inhibited the purified lipase up to 75%. The inhibitor changed the kinetic parameters of the enzyme by elevating the K(m) , as in competitive inhibition. The data suggest a possible role for plant lipase inhibitors in host plant resistance.  相似文献   

15.
Lai B  Li Y  Cao A  Lai L 《Biochemistry》2003,42(3):785-791
RNase H degrades the RNA moiety in DNA:RNA hybrid in a divalent metal ion dependent manner. It is essential to understand the role of metal ion in enzymatic mechanism. One of the key points in this study is how many metal ions are involved in the enzyme catalysis. Accordingly, either one-metal binding mechanism or two-metal binding mechanism is proposed. We have studied the thermodynamic properties of four metal ions (Mg(2+), Mn(2+), Ca(2+), and Ba(2+)) binding to Methanococcus jannaschii RNase HII using isothermal titration calorimetry. All of the four metal ions were found to bind Mj RNase HII with 1:1 stoichiometry in the absence of substrate. Together with enzymatic activity assay data, we propose that only one metal ion binding to the enzyme in catalytic process. We also studied the pH dependence of metal binding and enzyme activity and found that at pH 6.5, Mg(2+) did not bind to the enzyme without the substrate but still activated the enzyme to about 2% of its maximum activity (in 10 mM Mn(2+) at pH 8). This implies that the substrate may also be incorporated in metal ion binding and help to position the metal ion. To find which acidic residues correspond to metal ion binding, we also studied the binding thermodynamics and enzymatic activity assay of four mutants: D7N, E8Q, D112N, and D149N in the presence of Mn(2+). The thermodynamic parameters are least affected for the D149N mutant, which has a very low enzymatic activity. This indicates that Asp149 is essential for the enzymatic activity. On the basis of all these observations, we suggest a metal binding model in which D7, E8, and D112 bind the metal ion and D149 activates a water molecule to attack the P-O bond in the RNA chain of the substrate.  相似文献   

16.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

17.
Ferredoxin:NADP(+) oxidoreductase (FNR) was treated with cadmium and after that its diaphorase reaction in the presence of dibromothymoquinone (DBMIB) or ferricyanide (FeCy, K(3)Fe(CN)(6)) was examined. CdSO(4) (5 mM) caused 50% inhibition after half hour incubation. At least two components were distinguishable in the time-course inhibition, suggesting that more than one amino acid residues were engaged in reaction with the metal ion. The Lineweaver-Burk plots indicate that Cd(2+) is an uncompetitive inhibitor for DBMIB reduction but exerts non-competitive inhibition for the NADPH oxidation. The FeCy reduction did not follow Michaelis-Menten kinetics. Zn(2+) diminished inhibitory effect of Cd(2+) on the DBMIB reduction but enhanced inhibition of the FeCy reduction. Incubation with additional chelator (beta-mercaptoethanol, or histidine) abolished inhibitory effect of Cd(2+) on the FeCy reduction but not on the DBMIB reduction. The mode of Cd(2+) action on the diaphorase activity of FNR in the presence of DBMIB or FeCy is briefly discussed with the special reference to the implication of two distinct sites at the FNR molecule, which might be involved in the reduction of various non-physiological substrates.  相似文献   

18.
Kumar R  Bhakuni V 《Proteins》2008,72(3):892-900
Isocitrate lyase (Icl), an enzyme that plays an important role in the regulation of isocitrate flux and anaplerotic replenishment of pool of substrate required for biosynthetic process in Mycobacterium tuberculosis is a potential drug target for the antituberculosis drugs. Divalent cations induce differential effect of activation and inhibition of MtbIcl functional activity. The study for the first time demonstrates that interaction of cations with MtbIcl results in differential modulation of the enzyme structure which is probably the underlying mechanism for differential modulation of functional activity of enzyme by divalent cations. The Mg(2+) and Mn(2+) ions act as activators of the enzyme and in their absence no enzymatic activity was observed. These cations do not induce any significant structural alteration in the enzyme as observed by far-UV CD and solvent denaturation studies using chaotropic salts. However, the thermal denaturation studies demonstrate that they do interact with the noncatalytic alpha/beta barrel core domain of the enzyme and destabilize it. The inhibitors Zn(2+) and Cd(2+) interact directly with the catalytic domain of the enzyme and unfold it as a result of which complete loss of the enzymatic activity is observed in their presence. The results obtained from the studies provide intriguing insight into the possible mechanism of divalent cation-induced changes in structure, function, and stability of MtbIcl.  相似文献   

19.
Omeprazole was found to inhibit the K+-stimulated ATPase activity of the gastric (H+ + K+)-ATPase in parallel with the K+-stimulated p-nitrophenylphosphatase activity and the phosphoenzyme formation. The degree of inhibition of ATPase activity was directly correlated to the amount inhibitor bound to the enzyme preparation down to about 15% of the control enzyme activity. The acid-decomposed form of omeprazole, i.e. the inhibitory form, was found to react with and bind to sulfhydryl groups within the (H+ + K+)-ATPase preparation with close to a 1:1 stoichiometry. beta-Mercaptoethanol, when added beforehand and in a 10-fold excess of omeprazole, completely prevented binding of the inhibitor and its inhibition of the enzyme. In the presence of beta-mercaptoethanol two different reaction products could be detected in addition to omeprazole; the reduced form of omeprazole (H 168/22), and a product formed between beta-mercaptoethanol and a decomposition product, generated from omeprazole. Under those conditions neither inhibition nor binding was obtained, indicating that none of these three compounds was the inhibitor. Rather, the compound generated from omeprazole and reacting rapidly with either beta-mercaptoethanol or the -SH groups of the enzyme was the likely inhibitor compound. In order to reverse already established inhibition higher concentrations of beta-mercaptoethanol were needed than for protection indicating two different reaction pathways for protection and reversal by beta-mercaptoethanol. The reversal reaction was explained by a two-step reaction; in the first step the bound inhibitor was exchanged for a beta-mercaptoethanol molecule resulting in formation of compound H 168/22 and a mixed disulfide between the enzyme and beta-mercaptoethanol. In the second step, attack of another beta-mercaptoethanol molecule results in liberation of active enzyme and generation of the disulfide form of beta-mercaptoethanol. This hypothesis was substantiated by the fact that when 1 mM beta-mercaptoethanol was added to inhibited enzyme the radiolabel was partially displaced, without any change in the concentration of modified -SH groups.  相似文献   

20.
Paraoxonase (PON) is an organophosphate hydrolyser enzyme which also has antioxidant properties in metabolism. Due to its crucial functions, the inhibition of the enzyme is undesirable and very dangerous. PON enzyme activity should not be altered in any case. Inhibitory investigations of this enzyme are therefore important and useful. Metal toxicology of enzymes has become popular in the recent years. Here, we report the in vitro inhibitory effects of some metal ions, including Ni(2+), Cd(2+), Cu(2+) and Hg(2+), on the activity of shark serum PON (SPON). For this purpose, we first purified the enzyme from shark Scyliorhinus canicula (LINNAEUS, 1758) serum and analysed the alterations in the enzyme activity in the presence of metal ions. The K(M) and V(max) is 0.227 mM and 454.545 U/mL, respectively. The results show that metal ions exhibit inhibitory effects on SPON1 at low concentrations with IC(50) values ranging from 0.29 to 2.00 mM. Copper was determined to be the most effective inhibitor with IC(50) of 0.29 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号