首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】探究不同生境巨菌草内生固氮菌群落组成多样性及其分异规律。【方法】采用高通量测序固氮酶nif H标靶基因方法,研究了我国6个典型地区的巨菌草内生固氮菌群,包括福建闽侯县、新疆墨玉县、内蒙古阿拉善左旗、青海贵德县、甘肃安定区、海南那大镇,结合地理气候因子统计,分析了固氮菌多样性的环境驱动机制。【结果】共获得64122条nif H基因的有效序列,640个OTUs,归属于6个门、10个纲、17个目、24个科、33个属和39个种。不同地区巨菌草中优势内生固氮菌群的种类和丰度存在较大的差异。在门水平上,福州闽侯县、甘肃安定区、新疆墨玉县、内蒙古阿拉善左旗和青海贵德县5个地区的优势菌门均为变形菌门,海南那大镇的优势菌门为变形菌门和蓝藻菌门;属水平上,不同地区巨菌草最优势内生固氮菌类群分别为:福州闽侯县(变形菌门中未定属,80.56%);新疆墨玉县(变形菌门中未定属,33.14%);内蒙古阿拉善左旗(变形菌门中未定属,76.23%);甘肃安定区(α-变形菌纲中的未定属,53.78%);海南那大镇(变形菌门中未定属,38.37%);青海贵德县(变形菌门中未定属,46.12%)。Alpha多样性和Beta多样性分析表明,不同地区巨菌草内生固氮菌群落的多样性存在较大的差异,海南那大镇样本中巨菌草各类内生固氮菌群的多样性及丰富度最高,福建闽侯县样本中巨菌草各类内生固氮菌群的多样性及丰富度最低。典范对应分析(CCA)结果表明,年均降雨量和年均气温是影响巨菌草内生固氮菌群变化的主要因素,其次是土壤有机质、土壤全氮和土壤p H。【结论】不同地区巨菌草内生固氮菌群落的组成及丰度存在着较大的差异,海南那大镇巨菌草内生固氮菌群的种类及相对丰度较高,本研究可为巨菌草内生固氮菌群的资源开发及其固氮微生物肥料的菌种选育和生产应用提供理论支持。  相似文献   

2.
【目的】研究新疆艾比湖湿地不同季节盐角草根际和非根际土壤固氮微生物的多样性和丰富度与环境因子的相关性,以期探究在荒漠化和盐渍化不断严重的艾比湖湿地中随着季节变化的固氮微生物群落对恢复生态功能起到的潜在作用,为后续的湿地保护和退化恢复工作提供理论支持和数据基础。【方法】应用Illumina HiSeq PE250测序技术,分析6个土壤样本固氮微生物的多样性,结合相关的理化因子并利用RDA分析法探究土壤理化性质和固氮微生物菌落结构及丰富度的相关性。【结果】艾比湖湿地盐角草植物根际土壤的固氮微生物多样性高于非根际土壤,7月的土壤固氮微生物多样性高于10月和4月的土壤。土杆菌属(Geobacter)、假单胞菌属(Pseudomonas)、固氮菌属(Azotobacter)和慢生根瘤菌属(Bradyrhizobium)等为盐角草根际和非根际土壤中的共同优势菌属。这些固氮微生物优势菌属隶属于变形菌门(Proteobacteria)和蓝藻门(Cyanobacteria),且相对丰富度占比为85%和10%,其余各菌门共占比较少,仅为5%。土壤中固氮微生物的优势菌群与碱解氮(AN)、全氮(TN)、速效钾(AK)和有效磷(TP)呈显著相关。【结论】随着时间的推移土壤样本中固氮微生物的多样性和群落结构也发了改变,同一时期植物根际与非根际土壤中固氮微生物的群落结构并不相同。土壤的环境因子与固氮细菌的群落结构和丰富度的相关性研究可以为艾比湖湿地的退化恢复提供数据基础和理论支持。  相似文献   

3.
【目的】固氮菌和氨化细菌是氮循环产生生物有效氮的关键起始环节,直接影响了外来入侵植物的生长速度和扩散进程。然而,关于典型入侵植物薇甘菊根际可培养固氮菌和氨化细菌的研究尚未见报道,这在很大程度上制约了我们对薇甘菊根际高效的氮素转化机制的深刻理解。【方法】采用传统平板涂布培养法对野外采集的薇甘菊根际土壤中的可培养固氮菌和氨化细菌进行了分离鉴定,并进行了接种验证实验。【结果】结果表明,入侵植物薇甘菊根际土壤中的固氮菌和氨化细菌的菌群密度显著高于两个本地伴生植物(火炭母和鸡屎藤),其固氮效率及有机氮矿化效率也优于2个本地种;系统发育分析表明:薇甘菊根际的固氮菌菌株归类于5个属,分别为伯克霍尔德氏菌属(Burkholderia)、肠杆菌属(Enterobacter)、植物杆菌属(Phytobacter)、新肠杆菌属(Kosakonia)和根瘤菌属(Rhizobium);氨化细菌归类于7个属,分别为沙雷氏菌属(Serratia)、不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)、博德特氏菌属(Bordetella)、寡养单胞菌属(Stenotrophomonas)、苍...  相似文献   

4.
Based on the analysis of the nifH gene nucleotide sequences from GenBank, a system of primers was developed that makes it possible to obtain 370- and 470-bp PCR fragments of the nifH gene of nitrogen-fixing bacteria and archaea. The effectiveness of the proposed system for revealing the presence of nifH genes was demonstrated by PCR on the DNA isolated from nitrogen-fixing prokaryotes for which the primary structure of these genes is known and which belong to different taxonomic groups. nifH sequences of nitrogen-fixing prokaryotes of the genera Xanthobacter, Beijerinckia, and Methanosarcina, for which the capacity for nitrogen fixation was demonstrated earlier, but no data existed on the nucleotide composition of these genes, were determined and deposited in GenBank.  相似文献   

5.
固氮蓝细菌束毛藻(Tricodesmium)是海洋中丰度最高的固氮微生物,贡献了约42%的海洋生物固氮,为海洋生态系统提供了新的氮源,驱动海洋初级生产力和食物网,在海洋生物地球化学循环中发挥重要作用。作为海洋中“新氮”主要贡献者,束毛藻是一种不产生异形胞的丝状固氮蓝细菌。因为生物固氮的关键酶固氮酶对氧气十分敏感,一般固氮蓝细菌通常产生异形胞或采用夜间固氮的方式进行生物固氮,避免氧气对固氮酶的抑制作用。近年来研究发现,束毛藻具有一套独特的生物固氮体系,能够使同一藻丝在白天同时完成光合作用和生物固氮,并具有复杂的调控机制。本文综述了近年来束毛藻生物固氮策略的最新研究进展,介绍了其生物固氮和光合作用之间的精密调控机制,对拓展固氮微生物尤其是海洋蓝细菌固氮机制的认识具有借鉴意义。  相似文献   

6.
Biological nitrogen fixation (BNF) is one of the major nitrogen inputs into the biosphere, and the nitrogenase iron protein (nifH) gene plays important roles in regulating the molecular nitrogen (N2) fixation process. The nifH gene has also been extensively used to study the diversity and function of nitrogen-fixing microorganisms. In this study, we investigated the diversity of the nifH gene by culture-independent methods to analysis the planktonic nitrogen-fixing organisms in Lake Donghu, Wuhan, the largest urban lake in China. Results indicate that nifH gene sequences cloned from planktonic-community DNA showed high similarity to the uncultured cyanobacterial sequences deposited in the GenBank database. Phylogenetic analysis on the basis of the translated amino acid sequences further showed that most nifH clones were closely related to the reported cyanobacterial nifH gene sequences. Results also indicate that there are similar planktonic nitrogen-fixing organisms in the relatively independent areas of Lake Donghu, even though different regions showed a wide gradient in trophic status. These and other observations led us to believe that studies on nifH gene diversity and expression will increase our ability to understand the ecological function of target nitrogen-fixing groups in aquatic ecosystems.  相似文献   

7.
【背景】菊科(Asteraceae)外来入侵植物欧洲千里光(Senecio vulgaris L.)来源于欧洲,广泛分布于我国西南和东北地区,在湖北高海拔山区也有分布。在入侵过程中,内生细菌可能在其获取氮磷营养方面起到了一些关键性作用。【目的】探究欧洲千里光内生固氮菌和溶磷菌的多样性和功能,为理解其入侵机制及防治提供参考。【方法】选择来自6个不同种群的种子,萌发后转移到花盆生长6-8周,并从每个种群中各挑选9株生长情况良好的植株,对其叶片和根组织表面进行消毒处理。使用基于nifH基因(固氮功能基因)的高通量测序方法对植物的固氮微生物群落结构和多样性进行研究。通过涂布平板法和平板划线法,在固体无氮培养基(Ashby)和无机磷培养基(inorganic phosphate, NBRIP)上对植物内生菌进行分离、纯化,对纯化的固氮菌株和溶磷菌株进行16S rRNA基因测序。采用钼锑抗比色法分析纯化溶磷菌株的溶磷能力。【结果】基于nifH基因的内生菌高通量测序结果表明,欧洲千里光叶样本中固氮菌多样性显著高于根样本;固氮菌群落中丰度最高的属是慢生根瘤菌属(Bradyrhizobium,30.9%...  相似文献   

8.
Funaria hygrometrica Hedw. gametophytes collected in a clearfelled and slash-burned eucalypt forest in southern Tasmania were removed from core samples yielding high rates of nitrogen-fixing activity (acetylene reduction) and were examined with epifluorescence optics to determine the microorganism(s) responsible for nitrogen-fixing activity and their location on the moss gametophytes. This technique revealed heterocystous blue-green algae (Nostoc sp. and Anabaena sp.) as epiphytes on stem and leaf surfaces and within the rhizosphere. Heterocysts and akinetes were observed and could be distinguished from vegetative cells by morphology and a decrease in relative fluorescence in the case of heterocysts. Epifluorescence microscopy is a rapid and reliable method for detecting the epiphytic blue-green algae associated with Funaria. Other examples of nitrogen-fixing organisms associated with bryophytes are discussed in relation to the present study.  相似文献   

9.
Summary Soil samples obtained from various forested sites in North Carolina and Washington and from Alaskan tundra were examined for the presence of heterotrophic, nonsymbiotic nitrogen-fixing micro-organisms. Aerobic, nitrogen-fixing micro-organisms were not isolated from any of the soils examined. Estimates of anaerobic nitrogen-fixing bacteria in these soils ranged from 50,000 to 2,000,000/g when a dilution plate technique and a medium supplemented with potato extract was used. However, the isolation of individual colonies from the dilution plates showed that many of these bacteria were unable to fix nitrogen. Soil populations well below 100,000/g were generally indicated by this colony isolation technique. Differentiation of the colonies by size improved the accuracy of the dilution plate estimates somewhat. Dilution tube procedures appeared more suitable for obtaining accurate counts of nitrogen-fixing anaerobes in the soil than the use of dilution plates. The predominant nitrogen-fixing bacterium in most soils was a facultative anaerobe,Bacillus polymyxa. Appreciable numbers of nitrogen-fixing clostridia were also found in several tree nursery soils but were seldom isolated from forest and tundra samples. The clostridia isolated were classified asClostridium butyricum andC. pasteurianum. Variations in the fermentation patterns of these bacteria occurred when the nitrogen supply of the medium was altered. TheC. butyricum isolates were all from forest soils while all except one of theC. pasteuranium isolates were from tundra soils. Paper number2998 of the Journal Series of the North Carolina State University Agricultural Experiment Station, Raleigh, N.C  相似文献   

10.
[背景]关于高原生境轮作制度对土壤固氮微生物群落组成及多样性的影响研究尚少。[目的]深入认识攀西高原不同轮作制度对农田土壤肥力及土壤固氮微生物nifH基因群落结构与多样性的影响,以期建立合理的轮作制度。[方法]以凉山州冕宁县不同作物轮作制度[包括光叶紫花苕-烤烟(分轮作15年和20年两种,分别为G1和G2)、苦荞-烤烟(KQ)、大麦-烤烟(DM)和撂荒(CK)]的土壤为研究对象,通过化学分析和Illumina MiSeq技术,对土壤理化性质、土壤固氮微生物nifH基因多样性及群落组成进行分析。[结果]撂荒土壤全氮、铵态氮、硝态氮、有机碳和含水量最显著(P<0.05)。KQ轮作下土壤有效磷和速效钾分别提高了43.0%和2.60%,而DM轮作下的土壤理化性质均下降。土壤固氮酶活以撂荒土壤最高,G2轮作最低。土壤固氮微生物nifH基因多样性以G1轮作最高、G2轮作最低,门水平上以变形菌门(Proteobacteria)是优势共有nifH基因类群,相对丰度占群落的63.0%-92.4%;属水平上,偶氮氢单胞菌属(Azohydromonas)是不同轮作制度下的优势物种,慢生根瘤属(Brad...  相似文献   

11.
Ushakova  N. A.  Belov  L. P.  Varshavski  A. A.  Kozlova  A. A.  Kolganova  T. V.  Boulygina  E. S.  Tourova  T. P. 《Microbiology》2003,72(3):356-362
A nitrogen-fixing strain identified as Klebsiella pneumonia 402-2 and two endoglucanase-synthesizing Bacillus strains were isolated from the intestines of phytophagous animals. One of the Bacillus strains was identified as Bacillus subtilis GL. Klebsiella pneumoniae 402-2 increased the endoglucanase activity of both Bacillusstrains in mixed cultures.The data on the taxonomic position of strains 402-2 and GL and on the nitrogen-fixing capacity of strain 402-2 were confirmed by sequencing and analyzing their 16S rRNA genes and by amplifying the nitrogenase gene nifH.  相似文献   

12.
The fatty acid (FA) composition of bacteroid and peribacteroid membranes was studied in the symbiotic pairs differing in their nitrogen-fixing efficiency; the results are compared with the FA composition of plasmalemma and free-living rhizobia. The experiments involved lupine plants inoculated with strains of Bradyrhizobium lupini359a (Nod+Fix+) and 400 (Nod+Fix L) manifesting high and low nitrogen-fixing efficiency, respectively, and broad bean plants inoculated with strains of Rhizobium leguminosarum97 (Nod+Fix+) and 87 (Nod+Fix L) of high and low nitrogen-fixing efficiency, respectively. We showed that the rhizobia of the strains 359a and 97 were able to form nodules with peribacteroid membranes containing FA mainly or exclusively of plant origin. These strains were able to develop effective symbiotic pairs with legume plants. The use of strains 400 and 87 resulted in the formation of nodules with peribacteroid membranes containing typical bacterial (branched-chain) FAs; these strains were characterized by an ineffective symbiosis.  相似文献   

13.
Marine nitrogen-fixing bacteria distributed in the eelgrass bed and seawater of Aburatsubo Inlet, Kanagawa, Japan were investigated using anaerobic and microaerobic enrichment culture methods. The present enrichment culture methods are simple and efficient for enumeration and isolation of nitrogen-fixing bacteria from marine environments. Mostprobable-number (MPN) values obtained for nitrogen-fixing bacteria ranged from 1.1×102 to 4.6×102/ml for seawater, 4.0×104 to 4.3×105/g wet wt for eelgrass-bed sediment, and 2.1 × 105 to 1.2 × 107/g wet wt for eelgrass-root samples. More than 100 strains of halophilic, nitrogen-fixing bacteria belonging to the family Vibrionaceae were isolated from the MPN tubes. These isolates were roughly classified into seven groups on the basis of their physiological and biochemical characteristics. The majority of the isolates were assigned to the genusVibrio and one group to the genusPhotobacterium. However, there was also a group that could not be identified to the generic level. All isolates expressed nitrogen fixation activities under anaerobic conditions, and no organic growth factors were required for their activities.  相似文献   

14.
三峡库区水体中固氮微生物多样性及其影响因素   总被引:1,自引:1,他引:0  
佘伟钰  冯灿  杨渐  蒋宏忱 《微生物学报》2019,59(6):1127-1142
【目的】研究分析不同时空条件下三峡库区水体固氮微生物多样性,并探讨其与地球化学参数的相关性。【方法】采集三峡库区不同时间(三月份和六月份)和空间(干流与支流)的水体样品,对其进行地球化学参数分析,并通过构建克隆文库分析样品中固氮功能基因(nifH)的多样性进而探讨其与水体地化参数的相关关系。【结果】统计分析显示三峡库区水体固氮微生物α-多样性和群落组成具有时空差异。支流水体样品的固氮微生物α-多样性高于干流水体样品;六月水体样品的固氮微生物α-多样性高于三月水体样品。三峡库区三月水体样品中的固氮微生物群落以Proteobacteria (50.3%)和Firmicutes (40.0%)为主;六月水体样品的固氮微生物群落以Proteobacteria(48.4%)、Firmicutes(25.4%)和Cyanobacteria(19.0%)为主。Mantel检验结果显示:固氮微生物群落结构的差异与温度、pH和DIC等地球化学参数具有显著(P0.05)相关性,其中温度和pH的相关性系数最大。【结论】三峡库区固氮微生物的种群结构和多样性具有时空差异,影响三峡水库水体中固氮微生物群落结构与多样性的主要环境因素为温度和pH,同时浊度、DIC、氨氮也对库区水体固氮微生物群落结构和多样性有一定的影响。  相似文献   

15.
Culture-independent PCR–denaturing gradient gel electrophoresis (DGGE) was employed to assess the composition of diazotroph species from the sediments of three mangrove ecosystem sites in Sanya, Hainan Island, China. A strategy of removing humic acids prior to DNA extraction was conducted, then total community DNA was extracted using the soil DNA kit successfully for nifH PCR amplification, which simplified the current procedure and resulted in good DGGE profiles. The results revealed a novel nitrogen-fixing bacterial profile and fundamental diazotrophic biodiversity in mangrove sediments, as reflected by the numerous bands present DGGE patterns. Canonical correspondence analysis (CCA) revealed that the sediments organic carbon concentration and available soil potassium accounted for a significant amount of the variability in the nitrogen-fixing bacterial community composition. The predominant DGGE bands were sequenced, yielding 31 different nifH sequences, which were used in phylogenetic reconstructions. Most sequences were from Proteobacteria, e.g. α, γ, β, δ-subdivisions, and characterized by sequences of members of genera Azotobacter, Desulfuromonas, Sphingomonas, Geobacter, Pseudomonas, Bradyrhizobium and Derxia. These results significantly expand our knowledge of the nitrogen-fixing bacterial diversity of the mangrove environment.  相似文献   

16.
Associative nitrogen-fixing bacteria have been isolated, which were related to Azospirillum genus, by their morphological–cultural and physiological–biochemical ability to grow in microaerophilic conditions, as well as by a number of phenotypic traits. They comprised two species, namely, Azospirillum brasilense and Azospirillum lipoferum. Azospirilli strains displayed a varying salt resistance on potato medium containing a range of NaCl concentrations from 100 to 800 mM. The decrease in the nitrogen-fixing activity of azospirilli was detected starting from 200 mM NaCl. The biomass of the inoculated local varieties of wheat, Unumdor Bugdoi and Karlik 85, in microvegetation experiments exceeded the biomass of control plants by 20–50%. During the vegetation, some azospirilli strains formed spontaneous nodules on the wheat roots.  相似文献   

17.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

18.
Summary Soil properties of pioneer Pinus flexilis stands with similar topography and climate were investigated. Soils supporting this tree in association with Cercocarpus ledifolius were found to have higher percentages of total nitrogen than soils beneath similar stands lacking Cercocarpus.An excavated Cercocarpus ledifolius shrub in a Pinus flexilis stand in the San Bernardino Mountains of California was found to be nodulated and these nodules were found to be capable of fixing nitrogen. Other known nitrogen-fixing shrubs are frequent associates of Pinus flexilis in extreme sites.Implications of the phylogenetic relationship of some nitrogen-fixing species are briefly discussed, as well as their frequent occurrence in pioneer or extreme habitats.  相似文献   

19.
Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h?1 in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.  相似文献   

20.
The soil bacteria rhizobia have the capacity to establish nitrogen-fixing symbiosis with their leguminous host plants. In most Rhizobium species the genes for nodule development and nitrogen fixation have been localized on large indigenous plasmids that are transmissible, allowing lateral transfer of symbiotic functions. A recent paper reports on the complete sequencing of the symbiotic plasmid pNGR234a from Rhizobium species NGR234(1), revealing not only putative new symbiotic genes but also possible mechanisms for evolution and lateral dispersal of symbiotic nitrogen-fixing abilities among rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号