首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine centric diatom Biddulphia levis produced uniflagellate fusiform male gametes completely within the parent cell frustule. These gametes lacked both a central pair of microtubules in the flagellar axoneme and chloroplasts but did contain a cone of microtubules which passed posteriorly from the base of the kinetosome along the nuclear envelope. The gametes were released through a specialized pore in the girdle band leaving behind a cytoplasmic mass which contained chloroplasts and other cytoplasmic components. Tubules which resembled the flimmer hairs on the gamete flagellum occurred in cisternae of the cytoplasmic reticulum in the residual cytoplasm and in the nuclear envelope of the gametes. Gametogenesis in B. levis is compared with similar processes in other centric diatoms.  相似文献   

2.
The flagellar apparatus of Chrysolepidomonas dedrolepidota Peters et Andersen is similar to that of other members of the Ochromonadales, Chrysophyceae. there are four microtubular roots (R1-4) and a system II fiber (= rhizoplast). the R1 root consists of three microtubules that nucleate many cytoplasmic microtubules. One compressed band of 10 or more cytoplasmic microtubules is directed black along the R1 root in an anti-parallel direction. The R2 root consists of one to two microtubules, and it extends toward the distal end of the R1 root. The R3 root consists of six (?seven) microtubules near its proximal end. The “a” and “f” microtubules of the R3 root are under the short flagellum, and the “f” microtubule loops back and under the basal body, extending down to the nucleus. The R4 root consists of one to two microtubules extending along the left side of the shot flagellum and curving under the short flagellum where it terminates near the “a” microtubule of R3 Both flagella have a transitional plate and a transitional helix with five gyres. There is a thin, second plate in the basal body at the level of the distal end of the “c” tubules of the basal body triplets. The tripartite flagellar hairs have long lateral filaments but lack short lateral filaments. We compare the flagellar apparatus with that of other members of the Ochromonadales and members of the Hydrurales and Hibberdiales.  相似文献   

3.
In early log phase cultures of several of the drug-resistant mutants of Crithidia fasciculata that we have previously obtained, a high percentage of cells attach in pairs at the base of the flagellum. This process, which we have termed “flagellar adherence,” lasts for several hours in some cases and occasionally involves changes in cell morphology. The attachment occurs optimally in gently agitated cultures. Flagellar adherent pairs can be disassociated by vigorous agitation; the pairs reappear in the culture within one to three h after disassociation. These paired forms can be clearly distinguished from the normal cell division forms. Clones of flagellar adherent-competent mutant strains are uniformly able to form these pairs in culture. A low percentage of flagellar adherent forms can be induced in wild type cells by glucose starvation.  相似文献   

4.
Transmission electron microscopic examination of Cephaleuros virescens Kunze growing on leaves of Camellia sp. indicates that gametes are similar to those of Trentepohlia aurea. The gametes bear two, smooth isokont “keeled” flagella containing typical “9 + 2” axonemes and lacking scales. Flagellar insertion is apical and the parallel basal bodies overlap laterally. Each basal body is associated with a separate multilayered structure and component microtubular spline. The latter extends posteriorly beneath the plasmalemma. A nucleus, mitochondria, chloroplasts, and cytoplasmic haematochrome droplets are present. Pyrenoids and eyespots are absent. The subcellular components of C. virescens gametes are comparable to those found in gametes of T. aurea; however, the arrangement of basal bodies and multilayered structures differs slightly from that in T. aurea. Comparison of the fine structure of gametes from Cephaleuros, Phycopeltis, and Trentepohlia clearly indicates that the (1) mode of flagellar insertion, (2) morphology, number, and arrangement of multilayered structures, and (3) keeled flagella are common to these three genera and, thus far, unique among the green algae. Although flagellar insertion is apical, it is not bilaterally symmetrical (sensu stricto), nor is it asymmetrical (cf. Chara and Nitella sperms). The arrangement may be termed “reversed bilateral symmetry” and standardization of the terminology is recommended.  相似文献   

5.
Certain structures, associated with the flagellum, and which had hitherto been described as appearing occasionally in some species of trypanosomes, were found very frequently in epimastigote forms of strain F of Trypanosoma cruzi: (a) a group of tubular elements in an electron-dense mass enclosed within a swelling of the flagellar membrane as the flagellum emerges from its reservoir; (b) an expansion of the flagellar membrane at the point of the above swelling, which in cross-sections appears as a ring; and (c) an electron dense band in the body of the organism alongside the border of the flagellar pocket. The possible significance of these structures and the fact that so far they have been found only in one strain of T. cruzi are discussed.  相似文献   

6.
The flagellar hair ultrastructure of 16 strains of species of the prasinophycean genera Mantoniella, Mamiella, Pseudoscourfieldia, Nephroselmis, Tetraselmis, Scherffelia, Pterosperma, and Pyraminonas was examined in detail by whole-mount electron microscopy. The flagellar hairs of all genera displayed a high degree of ultrastructural complexity that was completely conserved within each strain. In all strains, flagellar hairs occurred on the sides of the flagella (lateral hairs); in several strains, special flagellar hairs also were found on the flagellar tips (tip hairs; absent in the Chlorodendrales and in Nephroselmis). Two groups of lateral hairs were distinguished: 1) T-hairs (“Tetraselmis-type” flagellar hairs), characterized by a smooth, tubular shaft of ca. 15 nm diameter and an overall length of 0.5–1.3 μm, and 2) Pt-hairs (“Pterosperma-type lateral flagellar hairs”), which were considerably longer (ca. 1.5–5.4 μm), characterized by a thick shaft of ca. 30 nm diameter, which was covered with a layer of regularly spaced small particles of ca. 10 nm diameter. In both groups of flagellar hairs, a strain-specific number of subunits (1–101) in linear arrangement was attached to the distal end of the shaft. Tip hairs were either structurally related to T-hairs (Mamiellales, Pseudoscourfieldia) or represented a separate group, Pt-hairs (“Pterosperma-type flagellar tip hairs”; Pterosperma, Pyramimonas). In four genera (Mantoniella, Mamiella, Pseudoscourfieldia, Nephroselmis), both groups of lateral hairs occurred together on the same cell. Interestingly in these taxa the Pt-hairs were exclusively attached to the shorter immature flagella (no. 2), but, in contrast, in Mantoniella and Pseudoscourfieldia the tip hairs were restricted to the longer mature flagellum (no. 1). Thus, flagella of different developmental status differ in their hair-scale complement. The occurrence, distribution, and ultrastructure of flagellar hairs can be used to identify and classify prasinophytes at all taxonomic levels.  相似文献   

7.
The formation of the flagellum in the spermatid of the Japanese land snail, Euhadra hickonis, is introduced by the appearance of a central indentation in the differentiated posterior side of the spherical nucleus early in spermiogenesis. One centriole moves to this part of the cell, changes in several structural respects and acquires a short-lived “centriole adjunct”. At first it lies tangential to the nuclear surface as it begins to induce formation of the flagellar axoneme; then it turns so that its proximal end fits into the deepening nuclear indentation (“implantation fossa”). Cytoplasmic tubules appear to mediate this shift in direction. Internal changes in the centriolar components begin as it initiates formation of the axoneme, and continue throughout spermiogenesis. First, a dense “cap” forms at its proximal end, the microtubular triplets become doublets and a pair of singlets occupies the center of the complex. All these microtubules extend from the dense cap and are continuous with those of the axoneme. As the basal body (modified centriole) becomes set in the implantation fossa, the material of the centriole adjunct forms 9 strands, which are continuous with the peripheral coarse fibers when these develop. The microtubular doublets of the basal body are visible for a short time between the fiber strands; in the mature spermatozoon they are found embedded in the basal body portions of the coarse fibers in a degenerated form. Posterior to the basal body, however, they separate from the inner sides of the striated coarse fibers and become the doublets of the axoneme. The proximal part of the elongating axoneme lies in a posterior extension of the cell, in which glycogen particles and mitochondria are conspicuous. As the mitochondria unite into a sheath tightly surrounding the axoneme, the structure of their cristae changes to form a paracrystal-line “mitochondria derivative”, which consists of many layers close to the nucleus and progressively fewer posteriorly. Outside of this “primary sheath”, more modified mitochondria unite to form a “secondary sheath” of paracrystalline lamellae which encloses a compartment, filled with glycogen particles, that extends in a low-pitched helix nearly to the end of the flagellum. In the late spermatid, microtubules become arranged at regular intervals around the nucleus and secondary sheath of the flagellum for a short period while the remaining cytoplasm and spermatid organelles such as the Golgi complex are being discarded. The flagellum of the mature spermatozoon is 250–300 μm in length, tapering gradually from a diameter of ca 1 μm just behind the nucleus to less than 0.3 μm at its tip, as the result of reduction in the amount of stored glycogen, the number of paracrystalline lamellae and the diameter of the peripheral fibers.  相似文献   

8.
Spores of the true slime mold Physarum polycephalum were examined at several stages of their development by means of scanning and transmission electron microscopy. The spores were globose, spine-covered structures produced within a sporangium enclosed in a tough, noncellular peridium. Cytologically, the spore represented a typical eukaryotic cell, having discrete organelles similar to spores of other myxomycetes. The presence of dictyosomes, helical filaments, and microbodies in these cells, as well as the further elucidation of the cell wall and the “polysaccharide-containing” areas, represent new contributions to the ultrastructure of the myxomycete spore. Of special interest were observations of metaphase nuclei just prior to spore cleavage, interphase nuclei in young spores, and nuclei in mature spores containing synaptonemal complexes. These observations indicate that in Physarum polycephalum mitosis occurs just prior to spore cleavage, and meiosis takes place after spore cleavage.  相似文献   

9.
Transmission electron microscopic examination of Cephaleuros virescens Kunze growing on leaves of Camellia spp. and Magnolia grandiflora L. indicates that unreleased zoospores in mature zoosporangia are similar to those produced by the related genus Phycopeltis epiphyton Millardet and unlike the quadriflagellate motile cells produced by taxa in other families of Chlorophyta. The zoospores bear four smooth isokont bilaterally “keeled” flagella containing typical “9 + 2” axonemes and lacking scales. Flagellar insertion is apical and the parallel basal bodies overlap laterally at two levels. A cross section through the four basal bodies shows a trapezoidal arrangement wherein the two upper (anterior) basal bodies are closer together than are the lower (posterior) two. Serial sections indicate that diagonally opposing upper and lower basal bodies anchor flagella which emerge from the same side of the apical papilla. Each of the four basal bodies is associated with a microtubular spline which extends beneath the plasmalemma to the posterior end of the zoospore. A distinct multilayered structure is associated with each of the lower basal bodies. A nucleus, mitochondria (two of which are closely associated with the nucleus and spline microtubules), a chloroplast, and cytoplasmic haematochrome droplets are present in each zoospore. Pyrenoids and eyespots are absent. Flagellar insertion is characterized by “reversed bilateral symmetry”; and zoospores with both right-handed and left-handed arrangements are produced. The ultrastructure of the zoospores clearly indicates that: 1) the mode of flagellar insertion: 2) morphology, number, and arrangement of multilayered structures, and 3) bilaterally keeled flagella are characteristic of the Chroolepidaceae.  相似文献   

10.
Closterium acerosum Ehrenberg (Chlorophyta) produced a distinct network of thin cytoplasmic strands, or Hechtian strands, upon controlled plasmolysis in a sucrose solution. The strands persisted for 30 min or longer and could be visualized with both LM and EM. Near the plasma membrane of the polar zones of plasmolyzing protoplasts, the strands formed a “lattice”‐like arrangement with interstrand spacing of 120–130 nm. The strands terminated at the fibrous zone of the inner cell wall stratum. Although actin cables could be found attached to the plasma membrane upon rhodamine phalloidin labeling of membrane ghosts, neither microfilaments nor microtubules were found in Hechtian strands at any stage of development. The formation of strands was not disrupted by centrifugation at 8000 g or by repeated cycles of plasmolysis‐deplasmolysis. Application of microtubule‐ or microfilament‐affecting agents or various proteolytic/polysaccharide‐degrading enzymes did not disrupt the formation of strands. Cold treatment of cells resulted in the formation of Hechtian strands.  相似文献   

11.
Small-subunit ribosomal RNA nucleotide sequences were inferred for Giraudyopsis stellifera Dangeard (Chrysomeridales), as well as for Pulvinaria sp. and Sarcinochrysis marina Geitler (Sarcinochrysidales,). Phylogenetic analyses of the molecular data indicate that the former is weakly related to the Phaeophyceae/Xanthophyceae clade, whereas the latter two have affinities to the Pelagophyceae, and the Sarcinochrysidales sensu stricto is transferred to this class. A recent study proposed that the Pelagophyceae belongs to a larger assemblage of chromophytic species characterized by reduced flagellar apparatuses. Although the flagellar apparatus characterizing the Sarcinochrysidales is reduced relative to the Chysomeridaels and some other chromophytes, it is the most complicated to be associated with “the reduced flagellar apparatus” lineage. Cladistic analyses of a traditional data set (largely ultrastructural features of the flagellar apparatus) and a combined traditional/molecular data set were used to assess the evolutionary trends of reduction in the flagellar apparatus within the heterokont chromophytes.  相似文献   

12.
We investigated the adhesive mucilage and mechanism of cell‐substratum adhesion of two benthic raphid diatoms, the marine species Craspedostauros australis E. J. Cox and the freshwater species Pinnularia viridis (Nitzsch) Ehrenberg. SEM images of P. viridis and C. australis cells revealed the presence of multistranded tethers that appear to arise along the raphe openings and extend for a considerable distance from the cell before forming a “holdfast‐like” attachment with the substratum. We propose that the tethers result from the elongation/stretching of composite adhesive mucilage strands secreted from raphes during the onset of cell adhesion and reorientation. Atomic force microscopy (AFM) force measurements reveal that the adhesive strands originating from the nondriving raphe of live C. australis and P. viridis are highly extensible and accumulate to form tethers. During force measurements tethers can be chemically stained and are seen to extend between the cantilever tip and a cell during elongation and relaxation. In most cases, AFM force measurements recorded an interaction with a number of adhesive strands that are secreted from the raphe. The force curves of C. australis and P. viridis revealed a sawtooth pattern, suggesting the successive unbinding of modular domains when the adhesive strands were placed under stress. In addition, we applied the “fly‐fishing” technique that allowed the cantilever, suspended a distance above the cell, to interact with single adhesive strands protruding from the raphe. These force curves revealed sawtooth patterns, although the binding forces recorded were in the range for single molecule interactions.  相似文献   

13.
Developmental study of the stem-node-leaf vascular continuum of Austrobaileya scandens White reveals that the vasculature within each leaf originates from a single procambial strand, that becomes separated into two strands only at the junction of leaf and stem. At lower levels in the stem the two strands become incorporated into independent portions of the stele. At later stages of development the solitary vascular bundle within the young leaf undergoes considerable lateral growth, resulting in an essentially continuous arc of vascular tissue. Ontogenetic evidence indicates that the vascular bundle in the midrib of the lamina should be regarded as a fundamentally single bundle and not interpreted as two bundles that have undergone various degrees of secondary fusion. A condition of two totally separate bundles extending the entire length of the leaf was not encountered. Our observations confirm the characterization of Austrobaileya as an example of “second rank” level of leaf vasculature. Nodal anatomy emphasizes the extremely isolated taxonomic position of Austrobaileya within the primitive dicotyledons.  相似文献   

14.
Hoffman , L. R., and Irene Manton . (U. Leeds, England.) Observations on the fine structure of Oedogonium. II. The spermatozoid of O. cardiacum. Amer. Jour. Bot. 50(5): 455–463. Illus. 1963.—Salient features of the fine structure of the spermatozoid of Oedogonium cardiacum are described and illustrated as they appear in whole mounts and in sections. There is a close resemblance to the zoospore of the same species (Hoffman and Manton, 1962) though the gamete is smaller and in some respects simpler. The flagella, though similar in length to those on the zoospore, are fewer (ca. 30 instead of ca. 120 per cell). The construction of the flagellar ring is similar though there is less mechanical material associated with the flagellar bases in the gamete. Compound “roots” alternating with the flagellar bases are identical in structure and relative position in both types of motile cells; there is no direct connection with the nucleus. Other details of resemblance and difference between the spermatozoid and the zoospore are discussed.  相似文献   

15.
SYNOPSIS. An electron microscope study was made of the “cyst-like bodies” (CLBs) previously described in cultures of Trypanosoma conorhini. It is again suggested that CLBs are a process of reproduction which involves fusion of epimastigotes, repeated divisions of DNA-containing organelles and organization of daughter epimastigotes that, after being completely formed, may be found free within the large central “vacuole” of the CLB. This “vacuole,” it is now evident, results from the fused and muchdilated flagellar reservoirs of parent epimastigotes. Our interpretation of the CLBs and their possible genetic significance are discussed.  相似文献   

16.
The question asked was why male genitalic structures have diverged in three syntopic species of Macrodactylus beetles. Four hypotheses were evaluated: 1. The ways in which male genitalia mesh with internal female structures indicate that selection for species isolation via mechanical exclusion (“lock and key”) is unlikely to explain the genitalic differences. 2. The specific mate recognition hypothesis also clearly fails to explain genitalic differences due to the implausibility of postulated environmental effects on genitalia, and lack of postulated coevolution of male and female morphologies. 3. Selection for species isolation via differences in genitalic stimulation (sensory lock and key) is unlikely due to relatively infrequent cross-specific pair formation and intromission in the field, and “excessive” numbers of species-specific genitalic structures and male courtship behavior patterns which nevertheless occasionally fail. It also fails to explain the frequent failure of intraspecific copulations to result in sperm transfer. This hypothesis cannot, however, be rejected as confidently as the previous hypotheses. 4. Conditions under which sexual selection by cryptic female choice could take place are common. Females frequently exercise their ability to prevent sperm transfer by conspecific males even after intromission has occurred, and females generally mate repeatedly, probably with different males. Males behave as if cryptic female choice is occurring, courting assiduously while their genitalia are within the female. Sexual selection by female choice could thus contribute to the divergence in genitalic structures.  相似文献   

17.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

18.
Actin microfilaments in melanophores of Fundulus heteroclitus   总被引:2,自引:0,他引:2  
Summary In melanophores of Fundulus heteroclitus, hormone-stimulated melanosome aggregation is accompanied by cytoplasmic flow from the cellular processes to the perikaryon, and reversal of these events takes place upon hormone-induced melanosome dispersion. These cells contain parallel arrays of microtubules, the majority of which are located in the perikaryon and in cortical regions of the processes. Studies with heavy meromyosin binding demonstrated two types of actin filaments: 1) a decorated meshwork of filaments similar to those usually found in close association with plasma membranes, and 2) filaments decorated in a manner similar to that of stress fibers. There is an apparent increase in the amount of filaments during melanosome aggregation. These results are discussed in relation to intracellular movement.Supported, in part, by grants AM-5384 and AM-13724 from U.S.P.H.S., and grant 234046 from the Japanese Ministry of Education  相似文献   

19.
Using high-speed microcinematography flagellar shock responses of a great number of Chlamydomonas cells, free-swimming as well as immobilized on micropipettes, were investigated in this study. Responses were elicited by flashes, by blue, red or white light steps or occurred “spontaneously”. A large variety of shock responses has been found, in part due to various kinds of flagellar deactivations. Typical courses of flagellar responses are described in detail. The major part of the analyzed responses consists of a transition back from undulatory beats, characteristic for shock responses, to the normal breaststroke beats, probably as a result of a decreasing Ca++ concentration at the axoneme. It is known that undulatory beats are triggered by a transient strong influx of Ca++ ions into the flagella. Responses are initiated simultaneously in the two flagella but are finished independently. Differences in cis (= next to the stigma) and trans (= far from it) flagella were observed but were not consistent. The origin of the deactivations during the shock responses is discussed, as well as an involvement of basal body-associated structures in flagellar beating and in the change between the two beating modes. The comparison of the two fundamentally different types of beating and a close study of transitional beats may convey insight into the complexity of flagellar beating in Chlamydomonas.  相似文献   

20.
S Khan  D M Ivey    T A Krulwich 《Journal of bacteriology》1992,174(15):5123-5126
Cells of Bacillus firmus OF4 and Bacillus alcalophilus were examined by rapid-freeze freeze-fracture and freeze-substitution electron microscopy. No special vesicular structures linked to growth at alkaline pH were found, either within or associated with the cytoplasmic membrane. The cytoplasmic membranes of the alkaliphilic bacilli and the neutrophilic Bacillus subtilis BD99 were indistinguishable. Distinctive intramembrane particle rings, presumed to be flagellar structures on the basis of distribution and morphological characteristics, were found in all of these species. These observations indicate that the adaptations required to effect oxidative phosphorylation and flagellar rotation at extreme alkaline pH occur without gross morphological rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号