首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Red blood cells of adult Western Painted Turtles (Chrysemys picta bellii) contain two hemoglobin components: HbA (alpha A2 beta 2) and HbD (alpha D2 beta 2). We present the complete amino-acid sequences of the alpha A-chains from the major component and of the beta-chains common to both components. Structural features are discussed with respect to the animals extreme tolerance of severe hypoxic conditions during hibernation which is accompanied by a high oxygen affinity of the hemoglobin. The strong ATP dependence of Western Painted Turtle hemoglobin oxygen affinity is contrasted by the loss of one ATP-binding site, beta 143(H21)-Arg----Leu. The primary structure of the beta-chains excludes an allosteric control mechanism by hydrogencarbonate as it was found in crocodiles. Except in turtles a hemoglobin pattern with HbA and HbD sharing the same beta-subunits has been found only in birds. In comparison to other vertebrate hemoglobins there is a surprising similarity of the sequences to those of bird hemoglobins. alpha A- as well as alpha D-chains show larger homologies to chains of the same type in different species than alpha A- and alpha D-chains to each other in the same species. This indicates a duplication of the alpha-gene preceding the divergence of turtles and birds.  相似文献   

2.
We compared the physiological responses of latitudinal pairings of painted turtles submerged in normoxic and anoxic water at 3 degrees C: western painted turtles (Chrysemys picta bellii) from Wisconsin (WI) versus southern painted turtles (Chrysemys picta dorsalis) from Louisiana (LA), Arkansas (AR), and Alabama (AL), and eastern painted turtles (Chrysemys picta picta) from Connecticut (CT) versus C. p. picta from Georgia (GA). Turtles in normoxic water accumulated lactate, with C. p. bellii accumulating less than (20 mmol/L) the other groups (44-47 mmol/L), but with relatively minor acid-base and ionic disturbances. Chrysemys picta bellii had the lowest rate of lactate accumulation over the first 50 d in anoxic water (1.8 mmol/d vs. 2.1 for AR C. p. dorsalis, 2.4 mmol/d for GA C. p. picta, and 2.5 mmol/d for CT C. p. picta after 50 d and 2.6 mmol/d for AL C. p. dorsalis after 46 d). Northern turtles in both groups survive longer in anoxia than their southern counterparts. The diminished viability in C. p. dorsalis versus C. p. bellii can be partially explained by an increased rate of lactate accumulation and a decreased buffering capacity, but for the CT and GA C. p. picta comparison, only buffering capacity differences are seen to influence survivability.  相似文献   

3.
4.
The blood of the Rock-Hopper Penguin contains only one hemoglobin component, corresponding to the Hb A of other birds. The primary structures of the alpha- and beta-chains are presented. The chains were separated by high-performance liquid chromatography and cleaved either enzymatically (alpha) or both enzymatically and chemically (beta). Both the native chains and their peptides were sequenced using liquid and gas phase sequenators. The peptides were aligned using their homology to the sequence of human hemoglobin and other bird hemoglobins. As compared to human hemoglobin, 44 amino-acid replacements are found in the alpha-chains (68% homology) and 47 in the beta-chains (67.8% homology). These exchanges involve seven alpha 1/beta 1 and one alpha 1/beta 2 contact in the alpha-chains, whereas in the beta-chains eight alpha 1/beta 1, one alpha 1/beta 2 and one hem contact are substituted. The influence of these replacements on the structure-function relationships in hemoglobin, as well as their importance for the diving ability of penguins, are discussed.  相似文献   

5.
Eastern painted turtles (Chrysemys picta picta) from Connecticut were submerged at 3 degrees C in normoxic and anoxic water to simulate potential respiratory environments within their hibernacula. Those in normoxic water could survive submergence for at least 150 d, while those in anoxic water could survive for a maximum of about 125 d. Turtles in normoxic water developed a slight metabolic acidosis as plasma lactate accumulated to about 50 mM in 150 d, while anoxic turtles developed a severe lactic acidosis as plasma lactate reached about 200 mM in 125 d; there was no respiratory acidosis in either group. Plasma [Na+] changed little in either group, [Cl-] fell by about one-third in both, and [K+] increased by about fourfold in anoxic turtles but only slightly in those in normoxic water. Total plasma magnesium and calcium increased profoundly in anoxic turtles but moderately in those in normoxic water. Consideration of charge balance indicates that all major ions were measured in both groups. Plasma glucose remained unchanged in anoxic turtles until after about 75 d of submergence, when it increased and continued to increase with the duration of anoxia, with much variation among individuals; glucose remained unchanged throughout in turtles in normoxic water. Hematocrit doubled in 150 d in turtles in normoxic water; in anoxic turtles, an initial increase was no longer significant by day 100. Plasma osmolality increased markedly in anoxic turtles, largely because of accumulation of lactate, but anoxic turtles only gained about half the mass of turtles in normoxic water, who showed no increase in osmolality. The higher weight gain in the latter group is attributed to selective perfusion and ventilation of extrapulmonary gas exchange surfaces, resulting in a greater osmotic influx of water. The physiologic responses to simulated hibernation of C. picta picta are intermediate between those of Chrysemys picta bellii and Chrysemys picta dorsalis, which correlates with the severity of the winter each subspecies would be expected to encounter.  相似文献   

6.
7.
8.
9.
The hemoglobin of the Giant Otter (Pteronura brasiliensis, Carnivora) contains only one component. The complete primary structures of the alpha- and beta-chains are presented. The globin chains were separated by high-performance liquid chromatography and the sequences determined by automatic liquid- and gas-phase Edman degradation of the chains and their tryptic peptides. The alpha-chains show 18 and the beta-chains 12 exchanges compared with human alpha- and beta-chains, respectively. In the alpha-chains, two substitutions involve alpha 1/beta 1-contacts and one a heme-contact. In the beta-chains one alpha 1/beta 1-, one alpha 1/beta 2- and one heme-contact are exchanged. The alpha- and beta-chains of the Giant Otter are compared to those of the Common Otter and other Carnivora hemoglobins.  相似文献   

10.
Ferret erythrocytes contain two hemoglobins differing only by their alpha-chains. The primary structure of the common beta-chain has been previously described; the complete sequence of the two alpha-chains are reported in this paper. The globin chains were separated by ion-exchange chromatography; the alpha-chains (42 steps), their tryptic peptides as well as the prolyl-peptides were subjected to automatic liquid- and gas-phase Edman degradation. The two alpha-chains are very similar, differing at only one position (Asp15----Gly15). Comparison with human hemoglobin alpha-chain shows 16 and 17 exchanges, for alpha 1 and alpha II chains, respectively; two substitutions involve alpha 1/beta 1 contacts and one the heme contacts. A high degree of homology was noted when the alpha-chains were compared to the corresponding chains of other representatives of the Carnivora order.  相似文献   

11.
1. Dual hemoglobins were isolated from both Lemmus and Discrostonyx, two genera of microtine rodents of the tribe Lemmini. 2. The dual hemoglobins result from dual alpha-chains and the charge difference Asp----Ala at position alpha 5. 3. The beta-chains of Dicrostonyx and Lemmus hemoglobins differ in charge by Ala----Asp at beta 125. 4. Cladograms are presented for the hemoglobin chains of microtine rodents.  相似文献   

12.
Human hemoglobin was reacted with the bifunctional reagent bis(3,5-dibromosalicyl) fumarate to yield a derivative (Hb alpha alpha) crosslinked between the two alpha-chains; when the reaction was carried out with HbA already crosslinked between the two beta-chains by 2-nor-2-formylpyridoxal 5'-phosphate, a doubly crosslinked derivative (Hb alpha alpha beta beta) was obtained. We have observed that both modified hemoglobins are extremely stable up to temperatures of at least 85 degrees C. The carbon monoxide binding kinetics of both crosslinked hemoglobins, studied at temperatures between 15 and 85 degrees C, by means of stopped flow and flash photolysis techniques, show that the ligand-linked allosteric transition is maintained even at the highest temperatures. These results are also relevant to the mechanism of thermal unfolding of human hemoglobin, since they show that dissociation into alpha beta dimers (and exposure of the relatively hydrophobic dimer-dimer interfaces) is an obligatory step in the irreversible denaturation of deoxy and carbon monoxy hemoglobin.  相似文献   

13.
The hemoglobin of the Common Otter (Lutra lutra, Carnivora) contains only one component. The complete primary structures of the alpha- and beta-chains are presented. They were separated by high-performance liquid chromatography and the sequences determined by automatic liquid and gas-phase Edman degradation of the chains and their tryptic peptides. The alpha-chains show 18 and the beta-chains 13 substitutions compared to human alpha- and beta-chains, respectively. In the alpha-chains one heme- and two alpha 1/beta 1-contacts are exchanged. In the beta-chains the replacements involve one heme-, one alpha 1/beta 1-, and one alpha 1/beta 2-contact. The alpha- and beta-chains of the Common Otter are compared to those of other Carnivora hemoglobins. The unexpected low number of substitutions between Common Otter hemoglobin and that of Lesser Panda as well as of Harbor Seal is discussed.  相似文献   

14.
15.
Sphenodon is the sole representative of the "beakhead" reptiles which were widely distributed during the Triassic period before the spectacular rise of dinosaurs. Sphenodon punctatus is the only survivor ("living fossil") of this period. The morphological features of Sphenodon are remarkably conservative and differ little from reptiles living 200 million years ago. In the present paper the determination of the primary structure of the tetrameric hemoglobins is described: three components are identified: hemoglobin A' (alpha A2 beta II2), hemoglobin A (alpha A2 beta I2) and hemoglobin D (alpha D2 beta II2). The components were characterized electrophoretically, the four different peptide chains were characterized by Triton electrophoresis as well as by high-performance liquid chromatography. The hemoglobins and--under dissociating conditions--also the chains, were isolated on columns of cellulose ion exchangers. Sequence determination was carried out after cleavage of the individual chains with trypsin and after a specific chemical cleavage of the Asp-Pro bond. For sequence determination the film technique and gas-phase method were employed. The data are compared with the sequence of the human hemoglobin, and interpretations of the amino-acid sequences are given. Particularly notable is the evidence of hemoglobin D: this hemoglobin (alpha D2 beta II2) is found only in birds, and in two cases in turtles. However, this component is not found in other reptiles. The results make possible an interpretation of the relatively high oxygen affinity and explain the lack of cooperativity (myoglobin properties) of these tetrameric hemoglobins.  相似文献   

16.
The hemoglobin of Weddell Seal (Leptonychotes weddelli, Pinnipedia) comprises two components with identical beta-chains. The alpha-chains differ in positions 15 (Gly/Asp) and 57 (Ala/Thr). We present the primary structure of the chains which have been separated by reversed-phase high-performance liquid chromatography. The sequences have been determined by automatic Edman-degradation with the film-technique or the gas-phase method, using the native chains and the tryptic peptides of the oxidized chains. Compared to the corresponding human chains we found 22 substitutions in the alpha-chains and 14 in the beta-chains. In the alpha-chains exchanges involve one heme- and three alpha 1/beta 1-contacts. In the beta-chains one heme contact, one alpha 1/beta 1- and one alpha 1/beta 2-contacts are substituted. The sequences are compared to those of other Pinnipedia and Arctoidea hemoglobins.  相似文献   

17.
The hemoglobin of the ground squirrel Spermophilus townsendii consists of two components which are present in a ratio of ca. 2:1. The two hemoglobins have identical alpha-chains, but differ in their beta-chains. We present the primary structures of the alpha- and the two beta-globin chains. Following chain separation by chromatography on carboxymethyl-cellulose CM-52, the amino-acid sequences were established by automatic Edman degradation of the globin chains and the tryptic peptides, as well as of a peptide obtained by acid hydrolysis of the Asp-Pro bond of the beta-chains. The two beta-chains differ by only one amino-acid residue, Ala being present in the main and Asp in the minor component in position 58 (E2). The comparison with human hemoglobin showed only 14 exchanges in the alpha-chains but 33 in the beta-chains. Whereas no contact positions are affected in the alpha-chains, we found four such substitutions in the beta-chains, including one heme contact, two alpha 1/beta 1-contacts, and one alpha 1/beta 2-contact. It seems however, that the substitution found in the beta-chains has no effect on the oxygen affinity.  相似文献   

18.
The blood of the teleost Notothenia angustata contains a major hemoglobin (Hb 1, over 95% of the total), accompanied by a minor component (Hb 2). The two hemoglobins have identical beta chains and differ in their alpha chains. The primary structure of both hemoglobins has been established through the elucidation of the complete amino acid sequence of the three chains. The study of the oxygen-binding properties shows that Hb 1 displays the Bohr and Root effects and has high affinity for organic phosphates. N. angustata belongs to the family Nototheniidae, suborder Notothenioidei. Unlike the vast majority of nototheniid species, which live in isolation in the Antarctic Ocean and have developed cold adaptation, N. angustata inhabits the waters of southern New Zealand and is not cold adapted. Although some hematological parameters typically favour oxygen transport in a temperate environment, the hemoglobin multiplicity and structural and functional features closely resemble those of the Antarctic species of the same family and suborder. Thus, N. angustata may be considered as a link between temperate and Antarctic habitats. The hypothetical separation history of N. angustata from the Antarctic species of the same family is discussed in the light of the present findings.  相似文献   

19.
To elucidate phylogenetic relationships among amniotes and the evolution of alpha globins, hemoglobins were analyzed from the Komodo dragon (Komodo monitor lizard) Varanus komodoensis, the world's largest extant lizard, inhabiting Komodo Islands, Indonesia. Four unique globin chains (alpha A, alpha D, beta B, and beta C) were isolated in an equal molar ratio by high performance liquid chromatography from the hemolysate. The amino acid sequences of two alpha chains were determined. The alpha D chain has a glutamine at E7 as does an alpha chain of a snake, Liophis miliaris, but the alpha A chain has a histidine at E7 like the majority of hemoglobins. Phylogenetic analyses of 19 globins including two alpha chains of Komodo dragon and ones from representative amniotes showed the following results: (1) The a chains of squamates (snakes and lizards), which have a glutamine at E7, are clustered with the embryonic alpha globin family, which typically includes the alpha D chain from birds; (2) birds form a sister group with other reptiles but not with mammals; (3) the genes for embryonic and adult types of alpha globins were possibly produced by duplication of the ancestral alpha gene before ancestral amniotes diverged, indicating that each of the present amniotes might carry descendants of the two types of alpha globin genes; (4) squamates first split off from the ancestor of other reptiles and birds.   相似文献   

20.
Different molecular forms of hemoglobins of locally available murines, represented by Rattus rattus rufescens, have been investigated and the probable genetic mechanisms leading to the observed heterogenicity in the hemoglobin phenotypes are discussed. Each fraction was isolated in chromatographically pure form, identified and characterised structurally to establish their alpha- and non-alpha-chain constitution. Six molecular forms of component hemoglobins were identified from a wild population of R. rattus rufescens. The present study suggests five different globin chains in the hemoglobin of house rats (Rattus rattus rufescens). There are apparently two alpha-chains, namely alpha I and alpha II, and three different beta-chains, viz. beta I, beta II and beta III. The invariable presence, though at varying concentrations, of all these five globin chains implicates a gene duplication at the alpha-chain loci and a gene triplication at the beta-chain loci, the latter being a rather rare and unique genetic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号