首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When administered systemically, oxytocin (OT) stimulates secretion of uterine prostaglandin F2alpha (PGF2alpha) in swine, but the role of endometrially-derived OT in control of PGF2alpha release is not clear. This study determined the effect of exogenous OT, administered into the uterine lumen of intact cyclic gilts, on PGF2alpha secretion during late diestrus. Intrauterine infusion of 40USP units OT (in 30 ml 0.9% saline) was performed for 30 min (1 ml/min) into each uterine horn between 7:00 and 9:00 h on days 10, 12, 14 and 16 after estrus. Beginning 20 min before infusion, samples of jugular venous blood were drawn at 5-10-min intervals for 140 min for quantification of 13,14-dihydro-15-keto-PGF2alpha (PGFM), the major stable metabolite of PGF2alpha. Progesterone was analyzed in samples collected 0, 60 and 120 min after initiation of OT infusion. Treatment with OT did not alter plasma concentrations of PGFM on days 10 or 12 but decreased (P<0.001) PGFM concentrations for 40 min after onset of infusion on day 16. Concentrations of PGFM also were reduced in the pre-treatment samples on day 14 (P=0.05) and day 16 (P<0.001) in OT-infused gilts. Plasma progesterone declined (P<0.01) between days 10 and 16 in control-infused gilts but did not decline until after day 14 (P<0.001) in gilts infused with OT. These results indicate that when OT is administered into the uterine lumen of pigs during late diestrus, it has an anti-luteolytic effect to reduce endocrine secretion of PGF2alpha and delay the decline in progesterone that occurs during luteolysis.  相似文献   

2.
Ovariectomized ewes were given progesterone and oestrogen priming as steroid pretreatment and subsequently treated with progesterone, prostaglandin F2 alpha (PGF2 alpha), or both. In Expt 1, plasma concentrations of the metabolite 13,14-dihydro-15-keto-PGF2 alpha (PGFM) were measured after an i.v. injection of oxytocin. There was little PGFM response in the untreated control ewes or in the pretreated ewes. Treatment with PGF2 alpha alone had no effect (P greater than 0.05), whereas treatment with progesterone either alone or with PGF2 alpha significantly (P less than 0.05) increased the uterine PGFM response to oxytocin. In Expt 2, chronically ovariectomized ewes had high concentrations of endometrial oxytocin receptors. Treatment with PGF2 alpha alone did not alter the concentrations of the receptors. Treatment with progesterone either alone or with PGF2 alpha significantly (P less than 0.05) reduced the concentrations of the receptors. It is concluded that progesterone promotes the PGFM response to oxytocin, but simultaneously suppresses the concentrations of endometrial oxytocin receptors.  相似文献   

3.
Experiment 1 was conducted to determine when the ovine uterus develops the ability to secrete prostaglandin F2 alpha (PGF2 alpha) in response to oxytocin and how development is affected by pregnancy. Pregnant and nonpregnant ewes received an injection of oxytocin (10 IU, i.v.) on Day 10, 13, or 16 postestrus. Jugular venous blood samples were collected for 2 h after injection for quantification of 13,14-dihydro-15-keto-PGF2 alpha (PGFM). In nonpregnant ewes, concentrations of PGFM increased following oxytocin on Day 16 but not on Day 10 or 13. Concentrations of PGFM did not increase following treatment on Day 10, 13, or 16 in pregnant ewes. Therefore, the ability of oxytocin to induce uterine secretion of PGF2 alpha develops after Day 13 in nonpregnant but not in pregnant ewes. Experiment 2 was conducted to precisely define when uterine secretory responsiveness to oxytocin develops. Pregnant and nonpregnant ewes received oxytocin on Day 12, 13, 14, or 15. In nonpregnant ewes, concentrations of PGFM increased following treatment on Days 14 and 15, but not earlier. Peripheral concentrations of progesterone showed that uterine secretory responsiveness to oxytocin developed prior to the onset of luteal regression. As in experiment 1, the increase in concentrations of PGFM following administration of oxytocin was much lower in pregnant than in nonpregnant ewes; however, some pregnant ewes did respond to oxytocin with an increase in PGFM. In experiment 3, pregnant ewes received an injection of oxytocin on Day 18, 24, or 30 postmating. Concentrations of PGFM increased following oxytocin on Days 18 and 24. The conceptus appears to delay and attenuate the development of uterine secretory responsiveness to oxytocin.  相似文献   

4.
The effect of exogenous melatonin on prostaglandin secretion was measured on Rasa Aragonesa ewes. Fourteen ewes received an 18 mg melatonin implant (M+) on 10 April and were compared with 13 control animals (without implants M-). Twenty days later, intravaginal pessaries were inserted in all animals to induce a synchronized oestrus (day 0). On day 14, ewes were injected, i.v., with 0.5 IU oxytocin. Plasma 15-ketodihydro-PGF(2alpha) (PGFM) concentrations were measured to assess uterine secretory responsiveness to oxytocin. After euthanasia, pieces of endometrium were collected to determine progesterone content and PGE(2) and PGF(2alpha) secretion in vitro, in the presence or absence of either 20 microg/ml recombinant ovine interferon-tau (roIFNt) or 1 nmol/l oxytocin in the medium. Endometrial progesterone content was similar in the two treatments (M+: 50.25+/-17.34 ng/mg tissue, M-: 43.08+/-11.21 ng/mg tissue). M+ ewes that responded to oxytocin had significantly higher plasma PGFM concentrations between 10 and 80 min after oxytocin administration, a higher mean PGFM peak (P<0.001), higher plasma PGFM levels after the challenge (P<0.05) and higher plasma progesterone concentrations (P<0.01) than control ewes. In the in vitro experiment, M+ and M- control samples secreted similar amounts of PGE(2). The presence of roIFNtau and oxytocin only stimulated PGE(2) production (P<0.05) in M- tissues. Control M+ tissues secreted higher amounts of PGF(2alpha) (P=0.07) and PGF(2alpha) secretion was significantly (P<0.01) stimulated by roIFNtau. Oxytocin produced this effect only in M- samples (P<0.01). In conclusion, although previous studies have demonstrated a positive effect of melatonin on lamb production, PGF(2alpha) secretion is higher in vitro and the PGE(2):PGF(2alpha) ratio is unfavourable in response to IFNtau, which could affect embryo survival. Whether or not these mechanisms are similar in pregnant ewes remains to be elucidated.  相似文献   

5.
The effects of acute heat stress (HS) and oxytocin (OT) injection on plasma concentrations of PGF2alpha and OT were examined in cyclic (C; n = 15) and pregnant (P; n = 11) dairy heifers. On Day 17 of synchronized estrous cycles, animals were randomly assigned to either thermoneutral (TN; 20 degrees C, 20% RH) or HS (42 degrees C, 60% RH) chambers. The jugular vein of each heifer was cannulated and blood samples collected hourly for 4 h, then every 15 min for an additional 3 h. Oxytocin (100 IU) was injected (IV) 5 h after the start of blood collection. Plasma samples were assayed subsequently for concentrations of 13,14-dihydro-15-keto PGF2alpha (PGFM) and OT. During the 7-h experiment, body temperature of HS heifers reached 41.2 degrees C as compared to 38.5 degrees C in control heifers. Plasma concentrations of PGFM increased (P<0.05) and peaked 30 min after OT injection in C (890 pg/ml) and P (540 pg/ml) heifers. In C heifers, heat stress failed to alter PGFM concentrations either before or after OT injection. In the P group, PGFM concentrations following OT injection tended to be higher in HS heifers were further TN heifers (peak values of 690 vs. 410 pg/ml). Pregnant TN and HS heifers were further classified as responders or non-responders to OT challenge according to a cutoff value for PGFM of 193 pg/ml (overall mean of C heifers minus 1 SD). Five of six HS and one of five TN pregnant heifers were classified as responders (P<0.06). Oxytocin concentrations in plasma prior to injection of exogenous OT were not affected by HS or pregnancy status. It is concluded that in C heifers, acute HS in vivo does not cause any further rise in PGF2alpha secretion. However, in P heifers, HS appears to antagonize suppressive effects of the embryo on uterine secretion of PGF2alpha, as indicated by the larger proportion of P heifers responding to OT challenge.  相似文献   

6.
Peripubertal gilts (n = 25) were treated with corn oil (CO) or ovarian steroids, one month following an ovariectomy. The first day of treatment was assigned as the first day of the experiment. The gilts received: Group (Gr) I (n = 4)--CO (2 mL x day(-1) from 1st to 12th day), Gr II (n = 4) and Gr III (n = 4)--progesterone (P4; 10 to 100 mg x day(-1) from 1st to 12th day), Gr IV (n = 5)--estradiol benzoate (EB; 400 microg x day(-1) from 1st to 3rd day), Gr V (n = 4) and Gr VI (n = 4)--EB + P4 (EB 400 microg x day(-1) from 1st to 3rd day, 20 microg x day(-1) at 6th and 9th day, 50 microg at 12th day plus P4 10 to 100 mg from 4th to 15th day). All gilts were injected with oxytocin (OT; 20 IU; i.v.) on the following days of the experiment: 13th (Gr I and Gr II), 15th (Gr III and Gr IV), 16th (Gr V) and 18th (Gr VI). Concentrations of the PGF2alpha metabolite--PGFM were determined in blood samples, collected from 30 min before to 120 min after OT injection. Baseline PGFM concentrations (30 min before OT) differed among treatment groups and were the highest in Gr V and Gr VI (P < 0.01 vs. other groups). The magnitude of the PGFM response to OT increased only in four of the five gilts of Gr IV and in three of the four gilts of Gr VI, and it was higher (P = 0.009) in Gr VI than in Gr IV. In the remaining groups, PGFM concentrations did not increase above the baseline in response to OT. The day after OT injection, oxytocin receptors (OTR) were found in the uterine tissues of all animals studied. The lowest OTR concentrations were in Gr I--75.5 +/- 11.2 fmol x mg protein(-1) and the highest in Gr IV--712.9 +/- 86.7 fmol x mg protein(-1); (P < 0.05 vs. other groups). The values of K of OTR differed among groups (P < 0.001) and ranged from 1.62 +/- 0.44 nM in Gr I to 12. 08 +/- 1.9 nM in Gr VI. A positive correlation (r = 0.54; P < 0.01) between plasma E2 and uterine OTR concentrations was observed. In conclusion, E2 and P4 are involved in both PGF2 synthesis/secretion and OTR formation, however, full PGF response to OT does not develop before puberty. Estrogens are evident stimulators of uterine OTR synthesis ingilts.  相似文献   

7.
The oxytocin-induced uterine prostaglandin (PG) F2 alpha response and the levels of endometrial oxytocin receptors were measured in ovariectomized ewes after they had been given steroid pretreatment (SP) with progesterone and estrogen to induce estrus (day of expected estrus = Day 0) and had subsequently been treated with progesterone over Days 1-12 and/or PGF2 alpha over Days 10-12 postestrus. The uterine PGF2 alpha response was measured after an i.v. injection of 10 IU oxytocin on Days 13 and 14, using the PGF2 alpha metabolite, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), as an indicator for PGF2 alpha release. The levels of oxytocin receptors in the endometrium were measured on Day 14. During the treatment with progesterone, the peripheral progesterone concentrations were elevated and remained above 1.8 ng/ml until the morning of Day 14. The PGFM responses to oxytocin in untreated controls and SP controls were low on both Days 13 and 14 whereas the levels of endometrial oxytocin receptors in the same ewes were high. Treatment with progesterone either alone or in combination with PGF2 alpha significantly (p less than 0.04) increased the PGFM response on Day 14 and reduced the levels of endometrial oxytocin receptors; treatment with PGF2 alpha alone had no effect. It is concluded that progesterone promotes the PGFM response to oxytocin while simultaneously suppressing the levels of endometrial oxytocin receptors. PGF2 alpha treatment had no effect on either the uterine secretory response to oxytocin or the levels of oxytocin receptors in the endometrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Pregnancy and intrauterine infusion of ovine trophoblast protein one (oTP-1) decrease oxytocin-induced secretion of prostaglandin F2 alpha (PGF) from the uterus. In the present study, effects of oTP-1 and pregnancy on endometrial secretion of PGF were examined in an in vitro perifusion system. In Experiment 1, endometrium from day 14 pregnant and cyclic ewes was perifused sequentially on both the lumenal and myometrial sides with Krebs Ringers Bicorbonate solution (KRB), KRB plus oxytocin (1 IU/ml) and KRB alone. Endometrium from pregnant ewes secreted more PGF from both lumenal and myometrial sides than endometrium from cyclic ewes (P less than 0.05). Oxytocin stimulated secretion of PGF from both sides of endometrium regardless of status. Secretion of PGF was greater from the lumenal surface of endometrium compared to myometrium (P less than 0.05) for pregnant and cyclic ewes. For Experiment 2, endometrium was collected from day 15 cyclic ewes and perifused sequentially with KRB, KRB plus 300 ng/ml of either Bovine Serum Albumin (BSA) or oTP-1, KRB with or without BSA or oTP-1 plus oxytocin (1 IU/ml) and then KRB alone. Oxytocin stimulated greater release of PGF from oTP-1-treated than BSA-treated endometrium. Pretreatment of endometrium with oTP-1 had the same effect on oxytocin-induced PGF secretion as cotreatment with oTP-1 and oxytocin. In Experiment 3, uterine horns of cyclic ewes were catheterized on day 10 of the estrous cycle, and infused with either oTP-1 or day 16 pregnant sheep serum proteins on days 12, 13 and 14. Endometrium was collected on day 15 and perifused sequentially with KRB, KRB plus oxytocin (1 IU/ml) and then KRB alone. Treatment of ewes with oTP-1 attenuated endometrial secretion of PGF in response to oxytocin. Results of this study indicate that: (1) pregnancy stimulates basal secretion of PGF from endometrium and has no effect on oxytocin-induced secretion of PGF in vitro; (2) short-term oTP-1 treatment enhances oxytocin-induced PGF secretion from day 15 cyclic endometrium and (3) long-term oTP-1 treatment in vivo inhibits oxytocin-induced PGF secretion in ewes.  相似文献   

9.
Gall MA  Day BN 《Theriogenology》1987,27(3):493-505
Pregnant sows and gilts were administered either 0, 2.5, 5, 10 or 20 mg prostaglandin F(2)alpha (PGF(2)alpha) intramuscularly on Day 112 or 113 of gestation at 0800 h in an effort to induce parturition. The average interval from PGF(2)alpha injection to farrowing was 55.1 +/- 5.7, 29.4 +/- 3.1, 32.1 +/- 4.6, 27.8 +/- 1.8 and 26.9 +/- 1.1 h for 0, 2.5, 5, 10 and 20 mg, respectively. All PGF(2)alpha treatments increased (P < 0.01) over controls the number of sows farrowing 23 to 33 h after injection. The average gestation length was significantly shorter in treated gilts; however, no detrimental effect on pig performance or pig survivability was observed. A second trial evaluated the effect of a 10-mg dose of PGF(2)alpha on the induction of parturition in sows in order to obtain a majority of sows farrowing within normal working hours (0700 to 1700 h). The interval from injection to farrowing was decreased (P < 0.05) by PGF(2)alpha treatment (66.2 +/- 5.3 vs 28.1 +/- 2.2 h). Fifty-seven percent (P < 0.05) of PGF(2)alpha-treated sows farrowed between 0700 and 1700 h as compared to 13.6% for control sows. A third trial was conducted to examine a sequential treatment of PGF(2)alpha and oxytocin to control the time of parturition more precisely. Sows receiving only 10 mg of PGF(2)alpha farrowed on an average 31.1 +/- 1.4 h after injection. The injection of 40 IU oxytocin 24 to 28 h after PGF(2)alpha decreased (P < 0.05) the interval from PGF(2)alpha to farrowing (28.1 +/- 0.9 h). The addition of oxytocin increased (P < 0.05) the number of sows farrowing within 3 h of injection (33 vs 86% for PGF(2)alpha and PGF(2)alpha + oxytocin treatments, respectively). A fourth trial was designed to determine if the addition of exogenous estradiol benzoate (EB) to a sequential treatment of PGF(2)alpha and oxytocin would improve the predictability and synchronization of the induced parturition. Sows were assigned to receive either saline, 10 mg PGF(2)alpha + 40 IU oxytocin or 10 mg PGF(2)alpha + 5 mg EB + 40 IU oxytocin. The addition of EB reduced (P < 0.01) the variance in the interval from oxytocin to farrowing and added precision to the predicted time of induced parturition.  相似文献   

10.
Uterine endometrium collected from pseudopregnant (PP) and cyclic gilts on day (D) 15 after estrus were perifused in vitro with 10 ug/ml of porcine conceptus secretory proteins (pCSP) or serum proteins (SP) in Krebs ringer bicarbonate (KRB) buffer. In Experiment 1, samples were collected from luminal and myometrial surfaces of endometrium and concentrations of prostaglandin F2 alpha (PGF) determined by radioimmunoassay (RIA). Secretion of PGF by endometrium from cyclic gilts was stimulated (P less than .05) by pCSP. In Experiment 2, endometrium from D 14 cyclic and PP gilts was perifused and concentrations of PGF and prostaglandin E2 (PGE) in perfusate were determined by RIA. Across both statuses, luminal surface secretion of PGF was stimulated (P less than .05) by pCSP. Treatment with pCSP decreased secretion of PGE from myometrial surface of endometrium from cyclic gilts and increased (P less than .01) secretion of PGE from the myometrial surface of endometrium from PP gilts. In Experiment 3, pCSP were separated into acidic and basic fractions by anion exchange chromatography and each fraction was perifused separately over the luminal surface of endometrium from cyclic and PP gilts. Perifusion with acidic pCSP suppressed secretion of PGF by endometrium from cyclic or PP gilts; while basic pCSP did not influence secretion of PGF. These results demonstrated that products secreted by Day 15 pig conceptuses stimulate release of PGF and PGE from porcine uterine endometrium.  相似文献   

11.
Luteolysis in the cow depends upon an interaction between prostaglandin F(2alpha) (PGF(2alpha)) and oxytocin. The objectives of our study were 1) to determine oxytocin concentrations in postpartum dairy cows and 2) to identify the temporal relationship between oxytocin and PGF(2alpha) release patterns during luteolysis in normal and abbreviated estrous cycles in the postpartum period. Serum oxytocin and PGF(2alpha) metabolite (PGFM) concentrations from nine cows which had short estrous cycles (< 17 d) were compared with those of six cows which had normal estrous cycles. Serum basal oxytocin concentrations in short estrous cycle cows (23.7 to 31.1 pg/ml) were higher (P<0.05) than those of normal estrous cycle cows (14.6 to 19.8 pg/ml). Oxytocin concentrations increased to peak values in both short and normal cycle cows, during luteolysis. Basal PGFM concentrations (112.2 to 137.4 pg/ml) were higher in cows with short cycle (P<0.05) than in cows with normal cycles (62.9 to 87.5 pg/ml). The increase in PGFM concentrations during luteolysis was significant in both normal cycle and short cycle cows (P<0.05). Increases in serum PGFM concentrations were always associated with increases in serum oxytocin concentrations in normal cycle and short cycle cows and the levels decreased simultaneously before the subsequent estrus. Results support the idea of a positive relationship between PGF(2alpha) and oxytocin concentration during the estrous cycle as well as a possible synergistic action of these hormones in the induction of luteolysis in dairy cattle.  相似文献   

12.
To test the endocrine-exocrine theory of maternal recognition of pregnancy in the pig 16 gilts were assigned randomly to a 2 X 2 factorial involving pretreatment with sesame oil (SO) or estradiol valerate (5 mg; EV) injected on Days 11 through 14 of the estrous cycle and an intrauterine injection of saline (5 ml; SA) or prostaglandin F2 alpha (50 micrograms; PGF) on Day 14. Peripheral blood samples were collected for 120 min postinjection and analyzed for 15-keto-13,14-dihydro-PGF2 alpha (PGFM). PGFM concentrations were lower in EV than SO gilts (438 vs. 844 pg/ml; p less than 0.05). There was heterogeneity of regression between EV and SO gilts (p less than 0.01), with EV gilts having a slower release of PGF from the uterine lumen into the vasculature. Prostaglandin F2 alpha did not increase mean PGFM concentrations (p greater than 0.10), but resulted in an altered temporal pattern of PGFM (p less than 0.05) compared to SA gilts. There was an interaction between the two treatments over time, with EV-PGF gilts demonstrating a slower, more gradual release of PGFM than SO-PGF gilts. To test whether prostaglandins of the E series were involved in this mechanism, gilts were assigned to two 4 X 4 latin squares balanced for residual effects and treated with saline or flunixen meglumine (Banamine). Each gilt was treated with four PGE:PGF infusion sequences (SEQ) in each uterine horn: phosphate-buffered saline (PBS; PBS-SEQ), PGE1 (50 micrograms), PGE2 (50 micrograms), and PGE1 (25 micrograms) + PGE2 (25 micrograms) (PGE-SEQ), with each infusion followed 15 min later by PGF (25 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of subcutaneous oxytocin on plasma concentrations of 13,14-dihydro-15-keto-prostaglandin (PG) F2 alpha (PGFM) was examined in the goat at various periods during the oestrous cycle and early pregnancy. 100 i.u. oxytocin was administered daily for 4 day, the dose being divided and given at 0900 and 2100 h; PGFM concentrations were assessed after the first treatment of each day. On days 3-6 (oestrus, day 0) PGFM concentrations increased significantly (P less than 0.001) within 15 minutes and both non-pregnant and mated goats exhibited oestrus behaviour by day 7. Significant (P less than 0.01) increases in PGFM were also produced on days 7-10, in both non-pregnant and pregnant goats, but the responses diminished from day 7 to day 10; only one goat (non-pregnant) came into oestrus. There was a marked difference in response between groups, however, during days 12-15. In non-pregnant goats significant (P less than 0.05) increases in PGFM were detected on days 13-15, but in pregnant animals oxytocin was without effect. Similarly, oxytocin did not increase PGFM concentrations on days 17-20 of pregnancy. However, uterine responsiveness reappeared in pregnant goats with significant (P less than 0.01) increases in PGFM on days 24 and 25.  相似文献   

14.
Oxytocin (OT) is involved in the regulation of luteolysis in pigs. However, it is still not clear if OT is responsible for initiation of luteal regression in this species. The objectives of the study were: (1) to compare OT receptors (OTr) concentrations in endometrium and myometrium of cyclic and early pregnant pigs, (2) to examine the effect of OT on plasma PGF(2)alpha secretion during the progressive luteal regression, (3) to ascertain the effect of OT on inositol phosphates (IPs) accumulation in endometrial and myometrial cells of cyclic and early pregnant pigs. Concentrations of OTr on the endometrium and myometrium of cyclic (n = 33) (days 2-4; 11-13; 14-16; 18-20; day 21) and early pregnant (n = 4) (days 14-16) gilts were determined and they ranged from 7 +/- 3 (days 11-13) to 377 +/- 113 fmol/mg protein (day 21) in the endometrium and from 33 +/- 11 (days 2-4) to 167 +/- 28 fmol/mg protein (days 18-20) in the myometrium. In both tissues, concentrations of OTr were low during the luteal phase and increased (P < 0.01) during the follicular phase. In contrast to myometrial OTr, endometrial OTr during pregnancy were undetectable. In next experiment, mature gilts (n = 12) were injected with OT (20IU; i.v.) for three consecutive days starting on days 14 and 15 of the oestrous cycle and plasma PGF(2)alpha metabolite-13,14-dihydro-16-keto PGF(2)alpha (PGFM) concentration was determined. On days 15-16 and 16-17, OT increased plasma PGFM level. This effect was not observed on days 14-15 of the estrous cycle. A negative correlation was noticed between plasma concentrations of PGFM and progesterone (r = -0.3; P < 0.05). In last experiment, OT (100 nM) augmented (P < 0.01) an accumulation of inositol phosphates (IPs) in isolated myometrial cells on days 14-16 (n = 4) and 18-20 (n = 3) of the estrous cycle and on days 14-16 (n = 4) of pregnancy. Oxytocin-stimulated accumulation of IPs was not observed in endometrial cells. In summary: (1) concentrations of OTr on both the endometrium and myometrium were the highest during perioestrus-period in pigs, (2) myometrium of early pregnant sows possessed functional OTr, (3) oxytocin increased plasma PGFM concentration after initiation of luteolysis; and (4) OT-stimulated accumulation of IPs in myometrial, but not in endometrial cells. In conclusion, OT appears to not be involved in the initiation of luteal regression in sows and functional OTr are still present in the myometrium during early pregnancy (days 14-16).  相似文献   

15.
The objective of this study was to investigate whether PGF2 alpha, administered to pregnant and pseudopregnant gilts in vivo, would cause an acute increase in serum progesterone concentrations prior to luteolysis. Pregnant (n = 9) and pseudopregnant (n = 4) gilts were fitted with a jugular vein cannula on day 40, were treated with 3 ml vehicle (control) i.m. on day 42 and with 15 mg PGF2 alpha on day 45. Blood samples were collected at frequent (5 and 15 min) intervals from 1 h before until 1 h after control and PGF2 alpha injections, at 15 min intervals for 4 h, and then at 5, 6, 9, 21, 33, 45 and 57 h post injection. Progesterone was measured by radioimmunoassay (RIA) in all samples. Porcine LH was measured by RIA in samples collected frequently in the 1 h pre- and 1 h post-injection periods. Serum progesterone concentrations were unchanged in both pregnant and pseudopregnant animals in response to control injection on day 42. However, in both pregnant and pseudopregnant gilts, PGF2 alpha injection on day 45 resulted in an acute increase (approximately 75-80% above pre-treatment levels; p less than 0.05) in serum progesterone lasting approximately 1 h, followed by a return to pre-treatment levels by 2 h, and then a decline to 1 ng/ml or less by 45-57 h (pregnant) or 21-57 h (pseudopregnant), associated with luteolysis. Serum LH concentrations were unchanged between 1 h pre- and post-treatment periods in response to either control or PGF2 alpha-treatment, in both pregnant and pseuodpregnant gilts. These results indicate that PGF2 alpha-injection produces a rapid and transient increase in serum progesterone concentrations which may result from a rapid and direct stimulatory action of PGF2 alpha on porcine luteal cell progesterone synthesis/secretion in vivo.  相似文献   

16.
Blood plasma concentrations of 13,14-dihydro-15-keto PGF2 alpha (PGFM) were measured in groups of mature non-pregnant and pregnant camels to study PGF2 alpha release patterns around the time of luteolysis and the timing of the signal for pregnancy recognition. Injection of each of four camels with 10 and 50 mg of PGF2 alpha showed clearly that five times the dose of exogenous hormone produced five times the amount of PGFM in peripheral plasma, thereby indicating that, as in other animal species, PGFM is the principal metabolite of PGF2 alpha in the camel. Serial sampling of three non-pregnant camels on each of days 8, 10 and 12, and three pregnant camels on day 10, after ovulation for 8 h showed a significant (P < 0.05) rise in mean plasma PGFM concentrations only on day 10 in the non-pregnant, but not the pregnant, animals. A single intravenous injection of 20, 50 or 100 iu oxytocin given to three groups of three non-pregnant camels on day 10 after ovulation did not increase their basal serum PGFM concentrations. However, daily treatment of six non-pregnant camels between days 6 and 15 (n = 3) or 20 (n = 3) after ovulation with 1-2 g of the prostaglandin synthetase inhibitor, meclofenamic acid, inhibited PGF2 alpha release and thereby resulted in continued progesterone secretion throughout the period of meclofenamic acid administration. These results showed that, as in other large domestic animal species, release of PGF2 alpha from, presumably, the endometrium controls luteolysis in the dromedary camel. Furthermore, reduction in the amount of PGF2 alpha released is associated with luteal maintenance and the embryonic signal for maternal recognition of pregnancy must be transmitted before day 10 after ovulation if luteostasis is to be achieved. However, the results also indicate that, in contrast to ruminants, the release of endometrial PGF2 alpha in the non-pregnant camel may not be controlled by the release of oxytocin.  相似文献   

17.
The purpose of this experiment was to determine whether the ability of oxytocin to stimulate uterine secretion of prostaglandin F2 alpha (PGF2 alpha) and luteal secretion of progesterone changes during the porcine estrous cycle. Nineteen multiparous sows were observed for estrus. After one estrous cycle of normal length, sows were assigned randomly to receive an injection of oxytocin (30 IU, i.v.) in the EARLY (Days 4-6; n = 6), MID (Days 9-11; n = 7), or LATE (Day 15; n = 6) stage of the estrous cycle. Concentrations of 13, 14-dihydro-15-keto-PGF2 alpha (PGFM) and progesterone were determined in jugular venous serum samples collected at -60, -45, -30, -15, 0, 2, 5, 10, 15, 30, 45, 60, 90, and 120 min after injection of oxytocin. The magnitudes of the PGFM and progesterone responses and the area under the respective response curves (AUC) were calculated for each sow. Concentrations of PGFM did not change in response to oxytocin administered during the EARLY or MID portions of the estrous cycle. Concentrations increased rapidly in 4 of 6 sows that received oxytocin LATE in the estrous cycle. Both magnitude and AUC were greater LATE in the estrous cycle than at either EARLY or MID cycle (p less than 0.05). Thus, uterine secretory responsiveness to oxytocin develops between Days 11 and 15 postestrus in the sow. For progesterone, a transient increase was observed immediately following injection of oxytocin at MID cycle (p less than 0.05), but not at the other times examined. Therefore, oxytocin appears to be capable of stimulating secretion of progesterone from the functionally mature corpus luteum.  相似文献   

18.
Luminal epithelial cells of porcine endometrium are unresponsive to oxytocin (OT) in vitro although they express the greatest quantity of OT and receptors for OT in vivo. Therefore, the objective of this study was to determine if oxytocin acted in an autocrine manner on luminal epithelial cells to stimulate prostaglandin (PG)F(2alpha) secretion. Treatment of endometrial explants or enriched luminal epithelial cells with OT antagonist L-366,948 decreased (P < 0.05) basal secretion of PGF(2alpha). Oxytocin increased (P < 0.01) PGF(2alpha) secretion from luminal epithelial cells that were pretreated with 1:5000 or 1:500 OT antiserum for 3 h to immunoneutralize endogenously secreted OT. However, OT only increased (P < 0.05) PGF(2alpha) secretion from glandular epithelial cells when pretreated with 1:500 OT antiserum. Pretreatment with OT antiserum did not alter the ability of OT to induce PGF(2alpha) secretion from stromal cells. Medium conditioned by culture of luminal epithelial cells stimulated (P < 0.05) phospholipase C activity in stromal cells, indicative of the presence of bioactive OT. Oxytocin was secreted by luminal epithelial cells and 33% was released from the apical surface. These results indicate that luminal epithelial cells secrete OT that acts in an autocrine and/or paracrine manner in pig endometrium to stimulate PGF(2alpha) secretion.  相似文献   

19.
Prepubertal Angus crossbred heifers (n = 24) between 8 and 10 mo of age were used to determine if progestogen treatment would enhance jugular concentrations of 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) after oxytocin (OT) injections. Heifers were stratified by age and weight and allotted to randomized treatments in a 2 x 2 factorial arrangement. Heifers were treated with either a norgestomet (NOR) implant (6 mg) for 9 d or no implant (0 mg; BLK). On d 8 of NOR treatment, jugular veins were catheterized and, on d 9, blood samples were collected every 15 min for 165 min. The first four samples were used to determine basal PGFM concentrations (an indirect measure of uterine PGF2 alpha release). After collection of the fourth sample, either OT (100 IU) or saline (0 IU; SAL) was injected via the jugular catheter. After the 165-min sample was collected, NOR implants were removed. Beginning 48 h after implant removal, a second 165- min blood sampling period was initiated. Average progesterone concentrations were less than 1 ng/ml during both bleeding periods. Within treatment, PGFM concentrations were similar between the first and second sampling periods; therefore, data within treatment were combined. Basal PGFM concentrations were higher (P < .01) in NOR-treated than in BLK heifers. Oxytocin did not increase PGFM concentrations in BLK-OT heifers; however, a marked increase in PGFM was detected in the NOR-OT heifers in response to oxytocin. Average PGFM concentration was greatest (P < .0001) in NOR-OT heifers, and PGFM profiles differed (P < .0001) between NOR-OT and each of the other treatment groups. Results from this study indicate that NOR increases basal PGFM and may "condition" the uterus to respond to OT in prepubertal heifers.  相似文献   

20.
On day 17 postestrus or postmating, heifers were given intrauterine injections of saline (2 pregnant, 2 non-pregnant) or 200 micrograms PGF2 alpha (7 pregnant, 6 nonpregnant) through cannulae installed surgically into the uterine horn ipsilateral to the corpus luteum bearing ovary. Jugular blood samples were collected prior to the laparotomy at which the cannulae were installed during surgery, and for 90 min following the intrauterine injection. Plasma was assayed for progesterone and 13,14-dihydro-15-keto-PGF2 alpha (PGFM). Laparotomies were reopened to confirm proper cannula placement and to determine if blastocysts were present in mated heifers. Concentrations of PGFM were higher in pregnant compared to nonpregnant heifers during the presurgery (68 +/- 26 vs 24 +/- 26 pg/ml; P less than .025) and surgery (186 +/- 47 vs 65 +/- 17 pg/ml; P less than .05) periods. Pregnancy status did not alter the mean concentrations of PGFM (pregnant, 554 +/- 70 pg/ml; nonpregnant, 422 +/- 81 pg/ml) or the half-life of its decline in concentration (18 min) following intrauterine injection of PGF2 alpha. Pregnancy at 17 days in cattle does not appear to influence PGF2 alpha transport from the uterine lumen or its metabolism in the uterus or elsewhere in response to an acute intrauterine injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号